Разное

Где 12 вольт в блоке питания компьютера: БП компьютера – цвета проводов, напряжение на разъемах

Содержание

БП компьютера – цвета проводов, напряжение на разъемах

Из блока питания компьютера выходит толстый жгут проводов разного цвета и на первый взгляд, кажется, что разобраться с распиновкой разъемов невозможно.

Но если знать правила цветовой маркировки проводов, выходящих из блока питания, то станет понятно, что означает цвет каждого провода, какое напряжение на нем присутствует и к каким узлам компьютера провода подключаются.

Цветовая распиновка разъемов БП компьютера

В современных компьютерах применяются Блоки питания АТХ, а для подачи напряжения на материнскую плату используется 20 или 24 контактный разъём. 20 контактный разъем питания использовался при переходе со стандарта АТ на АТХ. С появлением на материнских платах шины PCI-Express, на Блоки питания стали устанавливать 24 контактные разъемы.

20 контактный разъем отличается от 24 контактного разъема отсутствием контактов с номерами 11, 12, 23 и 24. На эти контакты в 24 контактном разъеме подается продублированное уже имеющееся на других контактах напряжение.

Контакт 20 (белый провод) ранее служил для подачи −5 В в источниках питания компьютеров ATX версий до 1.2. В настоящее время это напряжение для работы материнской платы не требуется, поэтому в современных источниках питания не формируется и контакт 20, как правило, свободный.

Иногда блоки питания комплектуются универсальным разъемом для подключения к материнской плате. Разъем состоит из двух. Один является двадцати контактным, а второй – четырехконтактный (с номерами контактов 11, 12, 23 и 24), который можно пристегнут к двадцати контактному разъему и, получится уже 24 контактный.

Так что если будете менять материнскую плату, для подключения которой нужен не 20, а 24 контактный разъем, то стоит обратить внимание, вполне возможно подойдет и старый блок питания, если в его наборе разъемов есть универсальный 20+4 контактный.

В современных Блоках питания АТХ, для подачи напряжения +12 В бывают еще вспомогательные 4, 6 и 8 контактные разъемы. Они служат для подачи дополнительного питающего напряжения на процессор и видеокарту.

Как видно на фото, питающий проводник +12 В имеет желтый цвет с черной долевой полосой.

Для питания жестких и SSD дисков в настоящее время применяется разъем типа Serial ATA. Напряжения и номера контактов показаны на фотографии.

Морально устаревшие разъемы БП

Этот 4 контактный разъем ранее устанавливался в БП для питания флоппи-дисковода, предназначенного для чтения и записи с 3,5 дюймовых дискет. В настоящее время можно встретить только в старых моделях компьютеров.

В современные компьютеры дисководы Floppy disk не устанавливаются, так как они морально устарели.

Четырехконтактный разъем на фото, является самым долго применяемым, но уже морально устарел. Он служил для подачи питающего напряжения +5 и +12 В на съемные устройства, винчестеры, дисководы. В настоящее время вместо него в БП устанавливается разъем типа Serial ATA.

Системные блоки первых персональных компьютеров комплектовались Блоками питания типа АТ. К материнской плате подходил один разъем, состоящий из двух половинок. Его надо было вставлять таким образом, чтобы черные провода были рядом. Питающее напряжение в эти Блоки питания подавалось через выключатель, который устанавливался на лицевой панели системного блока. Тем не менее, по выводу PG, сигналом с материнской платы имелась возможность включать и выключать Блок питания.

В настоящее время Блоки питания АТ практически вышли из эксплуатации, однако их с успехом можно использовать для питания любых других устройств, например, для питания ноутбука от сети, в случае выхода из строя его штатного блока питания, запитать паяльник на 12 В, или низковольтные лампочки, светодиодные ленты и многое другое. Главное не забывать, что Блок питания АТ, как и любой импульсный блок питания, не допускается включать в сеть без внешней нагрузки.

Справочная таблица цветовой маркировки,

величины напряжений и размаха пульсаций на разъемах БП

Провода одного цвета, выходящие из блока питания компьютера, припаяны внутри к одной дорожке печатной платы, то есть соединены параллельно. Поэтому напряжение на всех провода одного цвета одинаковой величины.

Напряжение +5 В SB (Stand-by) – (провод фиолетового цвета) вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

При измерении напряжений «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» – к контактам в разъеме. Можно проводить измерения выходных напряжений непосредственно в работающем компьютере.

Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютеры не устанавливают. Поэтому в блоках питания последних моделей это напряжение может отсутствовать.

Отклонение питающих напряжений от номинальных значений не должно превышать значений, приведенных в таблице.

При измерении напряжения на проводах блока питания, он должен быть обязательно подключен к нагрузке, например, к материнской плате или самодельному блоку нагрузок.

Установка в БП компьютера

дополнительного разъема для видеокарты

Иногда бывают, казалось бы, безвыходные ситуации. Например, Вы купили современную видеокарту, решили установить в компьютер. Нужный слот на материнской плате для установки видеокарты есть, а подходящего разъема на проводах, для дополнительного питания видеокарты, идущих от блока питания нет. Можно купить переходник, заменить блок питания целиком, а можно самостоятельно установить на блок питания дополнительный разъем для питания видеокарты. Это простая задача, главное иметь подходящий разъем, его можно взять от неисправного блока питания.

Сначала нужно подготовить провода, идущие от разъемов для соединения со сдвигом, как показано на фотографии. Дополнительный разъем для питания видеокарты можно присоединить к проводам, идущим, например, от блока питания на дисковод А. Можно присоединиться и к любым другим проводам нужного цвета, но с таким расчетом, чтобы хватило длины для подключения видеокарты, и желательно, чтобы к ним ничего больше не было подключено. Черные провода (общие) дополнительного разъема для питания видеокарты соединяются с черным проводом, а желтые (+12 В), соответственно с проводом желтого цвета.

Провода, идущие от дополнительного разъема для питания видеокарты, плотно обвиваются не менее чем тремя витками вокруг провода, к которому они присоединяются. Если есть возможность, то лучше соединения пропаять паяльником. Но и без пайки в данном случае контакт будет достаточно надежным.

Завершается работа по установке дополнительного разъема для питания видеокарты изолированием места соединения, несколько витков и можно подключать видеокарту к блоку питания. Благодаря тому, что места скруток сделаны на удалении друг от друга, каждую скрутку изолировать по отдельности нет необходимости. Достаточно покрыть изоляцией только участок, на котором оголены провода.

Доработка разъема БП

для подключения материнской платы

При выходе из строя материнской платы или модернизации (апгрейде) компьютера, связанного с заменой материнской платы, неоднократно приходилось сталкиваться с отсутствием у блока питания разъема для подачи питающего напряжения с 24 контактами.

Имеющийся разъем на 20 контактов хорошо вставлялся с материнскую плату, но работать компьютер при таком подключении не мог. Необходим был специальный переходник или замена блока питания, что являлось дорогим удовольствием.

Но можно сэкономить, если немного самому поработать руками. У блока питания, как правило, есть много незадействованных разъемов, среди них может быть и четырех, шести или восьми контактный. Четырехконтактный разъем, как на фотографии выше, отлично вставляется в ответную часть разъема на материнской плате, которая осталась незанятой при установке 20 контактного разъема.

Обратите внимание, как в разъеме, идущем от блока питания компьютера, так и в ответной части на материнской плате каждый контакт имеет свой ключ, исключающий неправильное подключение. У некоторых изоляторов контактов форма с прямыми углами, а у иных углы срезаны. Нужно разъем сориентировать, чтобы он входил. Если не получится подобрать положение, то срезать мешающий угол.

По отдельности как 20 контактный, так и 4 контактный разъемы вставляются хорошо, а вместе не вставляются, мешают друг другу. Но если немного сточить соприкасаемые стороны обоих разъемов напильником или наждачной бумагой, то хорошо вставятся.

После подгонки корпусов разъемов можно приступать к присоединению проводов 4 контактного разъема к проводам 20 контактного. Цвета проводов дополнительного 4 контактного разъема отличаются от стандартного, поэтому на них не нужно обращать внимания и соединить, как показано на фотографии.

Будьте крайне внимательными, ошибки недопустимы, сгорит материнская плата! Ближний левый, контакт №23, на фото черный, подсоединяется к красному проводу (+5 В). Ближний правый №24, на фото желтый, подсоединяется к черному проводу (GND). Дальний левый, контакт №11, на фото черный, подсоединяется к желтому проводу (+12 В). Дальний правый, контакт №12, на фото желтый, подсоединяется к оранжевому проводу (+3,3 В).

Осталось покрыть места соединения несколькими витками изоляционной ленты и новый разъем будет готов к работе.

Для того, чтобы не задумываться как правильно устанавливать сборный разъем в разъем материнской платы следует нанести с помощью маркера метку.

Как на БП компьютера

подается питающее напряжение от электросети

Для того чтобы постоянные напряжения появились на цветных проводах блока питания, на его вход нужно подать питающее напряжение. Для этого на стенке, где обычно установлен кулер, имеется трехконтактный разъем. На фотографии этот разъем справа вверху. В нем есть три штыря. На крайние с помощью сетевого шнура подается питающее напряжение, а средний является заземляющим, и он через сетевой шнур при его подключении соединяется с заземляющим контактом электрической розетки. Ниже на некоторых Блоках питания, например на этом, установлен сетевой выключатель.

В домах старой постройки электропроводка выполнена без заземляющего контура, в этом случае заземляющий проводник компьютера остается не подключенным. Опыт эксплуатации компьютеров показал, что если заземляющий проводник не подключен, то это на работу компьютера в целом не сказывается.

Сетевой шнур для подключения Блока питания к электросети представляет собой трехжильный кабель, на одном конце которого имеется трех контактный разъем для подключения непосредственно к Блоку питания. На втором конце кабеля установлена вилка C6 с круглыми штырями диаметром 4,8 мм с заземляющим контактом в виде металлических полосок по бокам ее корпуса.

Если вскрыть пластмассовую оболочку кабеля, то можно увидеть три цветных провода. Желто — зеленый – является заземляющим, а по коричневому и синему (могут быть и другого цвета), подается питающее напряжение 220В.

Желто — зеленый провод в вилке С6 присоединяется к заземляющим боковым полоскам. Так что если придется заменять вилку, не забудьте об этом. Все о электрических вилках и правилах их подключения можете узнать из статьи сайта «Электрическая вилка».

О сечении проводов, выходящих из БП компьютера

Хотя токи, которые может отдавать в нагрузку блок питания, составляют десятки ампер, сечение выходящих проводников, как правило, составляет всего 0,5 мм2, что допускает передачу тока по одному проводнику величиной до 3 А. Более подробно о нагрузочной способности проводов Вы можете узнать из статьи «О выборе сечения провода для электропроводки». Однако все провода одного цвета запаяны на печатной плате в одну точку, и если блок или модуль в компьютере потребляет больший, чем 3 А ток, через разъем подводится напряжение по нескольким проводам, включенным параллельно. Например к материнской плате напряжение +3,3 В и +5 В подводится по четырем проводам. Таким образом, обеспечивается подача тока на материнскую плату до 12 А.

👆Как проверить блок питания | Блоки питания компьютера | Блог

Блок питания перед установкой в компьютер желательно проверить, особенно, если вы покупаете бывший в употреблении БП. Да и новые БП, несмотря на проверку на производстве частенько бывают неисправны. Куда смотреть, чем делать замеры и где, какие отклонения напряжений допустимы для источника питания? В этом тексте мы попытаемся ответить на данные вопросы.

Что необходимо для проверки блока питания

Будем рассматривать две ситуации. В первом случае у нас имеется только сам блок питания, во втором имеется возможность установить его в тестовую систему — готовый компьютер. Для измерения напряжений нам нужен мультиметр. Можно взять недорогой вариант, но лучше все же потратиться, так как измерения будут точнее. Софтовые измерения напряжений в большинстве случаев очень неточны и программами типа HWMonitor или AIDA64 делать замеры — совершенно бесполезное занятие. 

Показания мультиметра RGK DM40: 12В — 12,43 В; 5 В — 5,108 В; 3,3 В — 3,305 В.

Даже у самой простой модели мультиметра при измерении постоянного напряжения отклонения от реальных значений будут невелики, и в отличие от софтовых показаний дадут почти реальную картину характера стабилизации напряжений в БП.

Проверяем БП без подключения к компьютеру

Прежде всего нужно провести внешний осмотр на предмет повреждений как самого корпуса БП, так и кабелей. При включенном в сеть БП и правильном положении выключателя на задней панели блока (вкл.), у нас на 24-контактом разъеме должно появиться дежурное напряжение 5 В. Допустимое отклонение от номинального значения ± 5 %, то есть от 4,75 В до 5,25 В.

Дежурное напряжение подается на материнскую плату и позволяет ее логике давать сигнал к включению блока питания. То есть, когда мы нажимаем кнопку на системном блоке, то подаем сигнал материнской плате, а уже она сигнализирует БП, что неплохо бы запуститься. Измерить его можно тут:

Если его нет, проверьте исправность кабеля питания, наличие напряжения в сети и положение выключателя на задней панели блока. Все правильно, а напряжения нет? Еще раз проверьте, на нужном ли контакте вы проводите измерения, и если все сделано верно, а напряжения нет, скорее всего БП неисправен. Выход из строя дежурного источника питания не такая редкая причина поломки.

Если дежурное напряжение есть, как на картинке выше, то запустить блок питания можно, замкнув два контакта на колодке 24-контактного разъема. В данном случае нам нужен PS_ON и любой земляной контакт. Удобно это делать обычной канцелярской скрепкой, если согнуть ее нужным образом, но подойдет и любой кусок проволоки.

Операцию эту надо делать аккуратно. Хотя при незапущенном, но включенном блоке напряжение у нас есть только на паре контактов — дежурный источник напряжения и PS_ON, и если вы их куда-нибудь не туда замкнете, ничего страшного не произойдет. У современных БП защита от кроткого замыкания на дежурном источнике питания, как правило, имеется.

БП должен запуститься, а вентилятор завертеться, если он вообще работает на низких нагрузках, то есть БП у вас не с полупассивным охлаждением. Теперь можно замерить основные напряжения. Их три: 3,3 В; 5 В и 12 В. Есть еще напряжение -12 В, но его можно не учитывать. В современных системах оно не нужно. Прежде всего — где измерять. Самые доступные разъемы в данном случае — это четырехконтактные Molex. 

Раньше во всех БП АТХ провода были определенного цвета для каждого напряжения, и об этом на пару страниц были разъясниения в Power Supply Design Guide, но в последнее время модным стали черные провода. Да, выглядят они определенно эстетичнее, но ориентироваться, где какое напряжение на разъеме стало труднее. Поэтому для вас сделал пару картинок с распиновкой. Ориентироваться где какая сторона у разъема удобно по защелке.

Разъем для дополнительного питания видеокарт.

Разъем для питания процессора.

Напряжение 3,3 В есть только на 24-контактном разъеме.

Допуски основных напряжений ± 5 % от номинала. 

Замеряем все напряжения, и если они в допустимых пределах, блок питания можно считать условно исправным. Почему условно? Полную информацию о его состоянии можно получить только тестированием под нагрузкой.

Проверка БП в составе системного блока

Если вы купили б/у блок, то лучше его сначала проверить вышеописанным методом, а потом устанавливать в компьютер. Далее просто запускаем бенчмарки, нагружающие одновременно основные потребители, видеокарту, процессор и повторяем измерения. 

Измерять при нагрузке лучше всего именно на самом нагружаемом разъеме. То есть, 12 В на разъеме для питания процессора и видеокарты. Для остальных напряжений это не так важно, ибо токи там небольшие. Потому что по проводам, идущим к этим разъемам, протекает ток, и чем он больше, тем больше падение напряжения на проводах.

Замеренное на неподключенном ни к чему разъеме напряжение будет отличаться от напряжения на разъеме видеокарты, например. А нас интересует, сколько именно приходит к потребителю, а не сколько на выходе внутри самого блока питания.

Как измерить напряжение на разъеме, подключенном к материнской плате или видиокарте? Можно использовать такой метод: в нужный контакт разъема со стороны проводов аккуратно (!) втыкаем тонкую иглу, и уже к ней подключаемся щупом мультиметра.

В данном случае на фото вместо иглы использован вывод резистора МЛТ.

Естественно, нагрузить на максимум БП с помощью компьютера, скорее всего, не удастся. Если вы не ставите 300 Вт блок на систему с GeForce RTX 3080. Чтобы нагрузить блок питания на максимум, потребуется специальное оборудование. Существуют специальные нагрузки для проверки компьютерных блоков питания, а есть универсальные электронные нагрузки. 

Впрочем, все это достаточно дорого. Специализированный стенд стоит как неплохая б/у иномарка. Если вы не хотите заниматься тестированием блоков, то тратить такие деньги бессмысленно.

Проверка на короткое замыкание

Согласно Power Supply Design Guide, короткое замыкание на выходе определяется как любое выходное сопротивление менее 0,1 Ом. Источник питания должен выдерживать длительное короткое замыкание на выходе без повреждения компонентов, дорожек на печатной плате и разъемов. Когда короткое замыкание устранено, питание должно восстановиться автоматически или повторным замыканием PS_ON на землю.

Большого смысла проверять наличие и работу системы защиты от короткого замыкания нет. Сегодня она имеется во всех современных блоках питания. Единственное исключение — самые бюджетные БП. В них могут сэкономить на защите низковольтных линий. Для 3,3 В это не так страшно. У нас нет доступных разъемов с таким напряжением, оно присутствует только на 24-контактном разъеме, и проблемы могут быть только при повреждении изоляции проводов 3,3 В, что бывает крайне редко.

А вот 5 В линия есть и на разъемах Molex, и SATA. Проверить работу защиты от КЗ можно тонкой проволочкой. Тонкой, потому что если защиты нет, или время ее срабатывания велико, пусть сгорит лучше эта проволочка, нежели провода БП или что-нибудь на плате. При этом ее желательно держать не пальцами. Плавящийся металл это не самое приятное, что можно пощупать 🙂

Sorry, there was a YouTube error.

Как работают блоки питания персональных компьютеров? Какие блоки питания бывают?

Как работают блоки питания персональных компьютеров?

Какие блоки питания бывают?

http://pc-doc.spb.ru/atx.html

Блок питания — жизненно важная часть компьютера, без которой его функционирование невозможно. Лишенный блока питания компьютер — всего лишь мертвая коробка, наполненная пластиком и металлом.

Блок питания преобразует напряжение сети переменного тока в различные напряжения постоянного тока, необходимые для электропитания компонентов персонального компьютера.

В этой статье рассматривается принцип работы блоков питания ПК и разъясняется, что такое максимально допустимая мощность.

Блоки питания ATX

Блок питания персонального компьютера (ПК) представляет собой металлическую коробку, которую обычно располагают в углу корпуса. Часто он виден с тыльной стороны корпуса, так как содержит гнездо для подключения сетевого шнура и вентилятор охлаждения.

Такие блоки питания часто называют импульсными источниками питания, поскольку для преобразования напряжения сети переменного тока в меньшие напряжения питания постоянного тока в них используются ключевые преобразователи. Как правило, на выходе блока питания ПК имеются следующие напряжения: 3,3 вольта; 5 вольт; 12 вольт.


Напряжения 3,3 и 5 вольт обычно используются для питания цифровых схем, а 12 вольт — для обеспечения работы вентиляторов и электродвигателей дисководов. Основным параметром блока питания является его мощность в ваттах. Мощность в ваттах равна произведению значения напряжения, измеряемого в вольтах, и значения тока, измеряемого в амперах. Пользователи со стажем, наверное, помнят, что в первых компьютерах были большие красные переключатели, от положения которых зависело состояние компьютера. Этими переключателями питание компьютера отключалось вручную. Фактически с их помощью включалась или отключалась подача на блок питания сетевого напряжения 220 вольт.

В современных компьютерах подача питания включается с помощью маленькой кнопки, а отключение машины производится путем выбора соответствующего пункта меню. Такие возможности управления блоками питания появились несколько лет тому назад. Операционная система имеет возможность отправлять на блок питания управляющий сигнал выключения. Нажимная кнопка подает на блок питания команду включения в форме сигнала напряжением 5 вольт. В блоке питания имеется схема, вырабатывающая напряжение питания 5 вольт, которое именуется VSB, для обеспечения наличия «дежурного напряжения» даже в условиях, когда блок питания считается выключенным, благодаря чему может функционировать кнопка включения.

Импульсные преобразователи напряжения

Приблизительно до 1980-х годов источники питания были тяжелые и большие. В них для преобразования напряжения электрической сети 220 вольт частотой 50 герц в напряжения 5 вольт и 12 вольт постоянного тока использовались большие тяжелые трансформаторы и большие конденсаторы (по размеру такие же, как металлические банки для газированной воды).

Использующиеся для этих целей в настоящее время импульсные источники питания значительно меньше и легче. Они преобразуют электрический ток частотой 50 герц (Гц, или колебаний в секунду) в ток более высокой частоты. Благодаря такому преобразованию для понижения напряжения с 220 вольт до напряжений, требующихся для отдельных компонентов компьютера, можно использовать маленький легкий трансформатор. Переменный ток более высокой частоты, поступающий из блока питания, легче выпрямлять и фильтровать, по сравнению с исходным напряжением сети переменного тока 50 Гц, что позволяет уменьшить пульсации питающего напряжения для чувствительных электронных компонентов компьютера.

Импульсный блок питания потребляет от электрической сети лишь столько электричества, сколько необходимо. Выходные напряжения и токи блока питания указываются на прикрепляемой к этому блоку наклейке.

Импульсные преобразователи используются также для получения переменного тока из постоянного, например, в источниках бесперебойного питания и автомобильных инверторах, которые служат для питания от автомобильного аккумулятора устройств, рассчитанных на питание от переменного тока. Импульсный преобразователь автомобильного инвертора преобразует постоянный ток, потребляемый от автомобильного аккумулятора, в переменный ток. Переменный ток используется в трансформаторе инвертора для повышения напряжения до величины, необходимой для питания бытовых приборов (220 вольт переменного тока).

Стандартизация блоков питания

Для персональных компьютеров за всю их историю было разработано по крайней мере шесть различных стандартных блоков питания. В последнее время промышленность по установившейся практике выпускает блоки питания на базе ATX. ATX — промышленная спецификация, устанавливающая такие требования к блокам питания, чтобы они подходили к стандартному корпусу ATX, а их электрические характеристики обеспечивали бы функционирование материнской платы ATX.

В кабелях питания персонального компьютера используются стандартизированные разъемы с ключами, предотвращающими неправильное включение. К тому же производители вентиляторов охлаждения часто снабжают свои изделия такими же разъемами, как у кабелей питания дисководов, чтобы при необходимости их можно было легко подключить к питанию 12 вольт. Благодаря проводке с цветовым кодированием и разъемам, соответствующим промышленным стандартам, пользователю предоставляется широкий выбор при замене блока питания.

Управление энергопотреблением с расширенным набором опций

Управление энергопотреблением с расширенным набором опций (advanced Power Management, APM) предусматривает пять различных состояний, в которых может находиться система. Корпорации Microsoft и Intel разработали APM для пользователей персональных компьютеров, желающих экономить электроэнергию. Чтобы использовать эту возможность, каждый из компонентов системы, включая операционную систему, базовую систему ввода-вывода (BIOS), материнскую плату и присоединенные устройства, должен быть APM-совместимым. Если требуется отключить APM в связи с подозрением в чрезмерном расходовании системных ресурсов или в создании конфликтных ситуаций, лучше всего это сделать в BIOS. В таком случае операционная система не будет пытаться повторно установить этот режим, как это иногда происходит в случае его отключения только в программном обеспечении.

Мощность блока питания

400-ваттный импульсный блок питания не обязательно будет потреблять большую мощность, чем 250-ваттный. Более мощный блок питания может потребоваться в случае, если все имеющиеся слоты материнской платы заполнены платами или все отсеки для накопителей в корпусе компьютера заняты дисковыми накопителями. Не следует использовать 250-ваттный блок питания, если суммарная мощность потребления всех устройств компьютера равна 250 ватт, поскольку блок питания нельзя загружать на 100 процентов его номинальной мощности.

Блоки питания одинакового форм-фактора («форм-фактор» относится к фактической конфигурации материнской платы) как правило, отличаются номинальной мощностью и сроком гарантии.

Проблемы, связанные с блоками питания

Блок питания — самый потенциально ненадежный компонент персонального компьютера. Каждый раз во время работы он разогревается и охлаждается, а при каждом включении компьютера испытывает на себе бросок переменного тока. Часто он выходит из строя из-за остановки вентилятора охлаждения и возникшего вследствие этого перегрева компонентов. Все компоненты персонального компьютера питаются постоянным током, поступающим с блока питания.


Обычно при выходе из строя блока питания ощущается запах гари, после чего компьютер выключается. При выходе из строя такого жизненно важного компонента, как охлаждающий вентилятор, и наступившем вследствие этого перегреве компонентов блока питания может возникнуть и другая проблема. Неисправность проявляется в том, что без определенной закономерности происходит перезагрузка системы или без видимой причины происходит сбой ОС Windows.

При решении проблем, причиной которых мог бы быть неисправный блок питания, следует руководствоваться сопроводительной документацией компьютера. Если вы уже снимали кожух своего персонального компьютера, чтобы установить сетевой адаптер или плату оперативной памяти, вам будет нетрудно заменить и блок питания. Сначала нужно в обязательном порядке отсоединить сетевой шнур, поскольку в блоке питания имеется опасное для жизни напряжение даже тогда, когда компьютер выключен.

Модернизация блоков питания

В современных материнских платах и чипсете предусмотрена функция наблюдения за скоростью вращения вентилятора охлаждения блока питания в БИОС и в приложении, работающем под Windows, которое поставляется производителем материнской платы. Многие конструкторы компьютеров предусматривают такое управление вентилятором, что его скорость вращения регулируется в зависимости от потребностей в охлаждении.

Современные веб-серверы комплектуются запасными блоками питания, которые можно заменять в то время, когда вместо них питающее напряжение на аппаратуру поступает от другого блока питания. В некоторых современных компьютерах, в частности в таких, которые предназначены для использования в качестве серверов, имеются резервируемые блоки питания. Это значит, что в системе имеется два или больше блоков питания, один из которых обеспечивает эту систему электропитанием, а другой (другие) находится в резерве. При отказе основного блока питания резервный блок немедленно берет на себя всю нагрузку Затем, пока аппаратура питается от резервного блока питания, можно произвести замену основного блока питания.












включаем БП перемычкой и другими способами — iChip

Компьютер не включается — это очень распространенная проблема, которая может быть вызвана чем угодно. В такой ситуации чаще всего виновником «торжества» выступает какая-либо комплектующая. Чаще всего это блок питания или процессор. Проверить ЦПУ в домашних условиях на работоспособность довольно трудно. Для этого потребуется найти аналог, который подойдет в сокет материнской платы. И тогда методом исключения можно прийти к выводу, что процессор не работает. Но у кого из вас дома валяется несколько камней, подходящих в один сокет? То-то же.

А вот проверить БП на домашнем операционном столе вполне реально. Для этого существует несколько способов. И при этом не потребуется сам ПК. То есть, если у вас имеется не подключенный блок, то его не обязательно вставлять в корпус и соединять с остальными комплектующими. Сегодня мы расскажем, как проверить блок питания без компьютера. 

Как завести блок питания без компьютера: принципы работы компьютера

Перед любой диагностикой полезно знать, как вообще устроен компьютер. Блок питания — это комплектующая, которая отвечает за снабжение остальных элементов компьютера электроэнергией. Все компоненты компьютера имеют множество параметров, которые являются стандартизированными. Поэтому на любом блоке питания вы найдете коннекторы определенных типов. Например, для подключения материнской платы, жестких дисков, видеокарты и так далее.

В первую очередь необходимо проверять работоспособность БП, ведь бесполезно диагностировать остальные комплектующие без питания. И только после этого следует переходить к проверке проводов, которые идут от корпуса к материнской плате и отвечают за старт компьютера. А затем можно уже тестировать и остальные комплектующие.

Как стартануть блок питания без компьютера: подготовка к «операции»

Как мы уже говорили, проверить блок питания можно несколькими способами. В зависимости от конкретно вашей ситуации, вы можете подобрать метод, который будет удобен и доступен именно вам. Но независимо от выбранного способа, вы должны перед началом диагностики выполнить следующие действия:

1. Выключите компьютер. Отключите блок питания от всех комплектующих. Сам блок можно не вынимать из корпуса и провести диагностику прям внутри «тушки». В дальнейшем нам понадобятся некоторые коннекторы. Так что если кабели внутри корпуса протянуты очень туго, освободите их для дальнейших манипуляций чтобы вам было удобно.

2. Подключите к блоку питания любой рабочий жесткий диск. Но соединять его с материнской платой не нужно. Если этого не сделать, то после проделанной процедуры в работе БП могут возникнуть неисправности. Если жесткий диск вышел из строя, то на его роль может подойти проигрыватель CD/DVD дисков.

Как включить блок питания без компьютера: перемычка

Суть способа заключается в том чтобы заставить блок питания завестись без подключения к материнской плате. По идее сколько второстепенных устройств не подключай к БП — он не стартанет. Обязательно потребуется подсоединенный основной 20 или 24-pin кабель. Но можно обойти это правило. Для этого нам потребуется сделать специальную перемычку из любого материала, который проводит электричество. Лучше всего на эту роль подойдет скрепка, медная проволока. Но можно использовать то, что найдется под рукой. 

Далее нужно взять 20 или 24-pin коннектор и вставить в него перемычку следующим образом: один конец вставьте в четвертый контакт (к нему подключен зеленый проводок от блока питания), а другой конец вставьте в пятый контакт (к нему подключен черный провод от блока питания). Зелёный контакт в схеме обычно изображается как «PS-ON» («Power Supply ON» — включение БП), а чёрный как «COM» («Common» — общий) или GND («Ground» — заземление).

Не забудьте подключить второстепенное устройство, на роль которого сгодится жесткий диск и твердотельный накопитель. После этого можно запускать блок питания. Кулер на БП должен начать крутиться, а жесткий диск будет нагреваться и слегка гудеть. Но это при условии, что вы правильно подключили перемычку. Если вы уверены, что все сделано правильно, а блок питания не запускается, то можно говорить о том, что комплектующая неисправна. Если он начал работать, то это не означает, что все в порядке. Если у вас дома есть вольтметр, то рекомендуется воспользоваться им для дальнейшей диагностики чтобы можно было с уверенностью сказать, что БП функционирует правильно.

Как запустить компьютерный блок питания без компьютера: вольтметр

Для того чтобы поставить точный диагноз, нужно воспользоваться вольтметром, который показывает выходное напряжение на коннекторах. У каждого типа должно быть определенное значение. Если это значение не сильно отклоняется от нормы, то с БП все в порядке. Если отклонения больше, чем на 5% от рекомендуемых цифр, это значит, что есть неполадки в работе блока питания. И такую комплектующую лучше либо заменить, либо отнести в сервисный центр. Но, как показывает практика, намного проще и быстрее купить новый БП и не ждать пока старый отремонтируют, ведь компьютер многим из нас нужен каждый день. 

Напоминаем, что блок питания — это компонент, который снабжает электроэнергией остальные комплектующие. В случае его неполадки, он может с легкостью забрать с собой «на тот свет», например, видеокарту или материнскую плату. Поэтому не стоит пренебрегать такой простой диагностикой. Она может сэкономить ваши деньги и время, если вовремя выявить неисправность. Мы понимаем, что вольтметр есть дома не у каждого. Но рекомендуем его все же приобрести. С его помощью можно диагностировать не только блок питания, но и другие комплектующие. Тем более, что по цене он доступен абсолютно каждому. Вот неплохой вариант:

Итак, включите блок питания описанным выше способом. С помощью прибора замерьте показатели ряда черного и розового проводков. Рекомендуемое значение должно колебаться около 3,3 вольта. Тоже самое сделайте для черного и желтого провода. Здесь уже цифры должны находиться около 12 вольт. А для черного и красного — 5 вольт. Если все в пределах нормы, то диагностику можно завершить. После этого можно с уверенностью сказать, что с вашим блоком все в порядке.

Если же вольтметра у вас нет, то вы всегда можете провести визуальный осмотр. Для этого снимите крышку с блока питания и в первую очередь проверьте состояние конденсаторов. Если они вздутые или треснутые — все плохо. Блок нужно менять. Разумеется, осуществлять такую процедуру нужно при выключенном питании. Также заодно прочистите БП внутри. Пыль может стать причиной короткого замыкания и других малоприятных инцидентов.

Заключение

Диагностика блока питания в домашних условиях состоит из трех этапов.

  • Запуск блока с помощью перемычки.
  • Замер выходного напряжения с помощью вольтметра.
  • Визуальный осмотр на предмет вздутых конденсаторов и скоплений пыли.

Как видите, в этом нет ничего сложного и даже начинающий пользователь осилит такую простую процедуру. Помимо блока питания следите и за остальными комплектующими в вашем компьютере и регулярно проверяйте показания различных датчиков, если не хотите столкнуть с поломкой какого-либо компонента.

Читайте также:

Теги

блок питания

3.3 вольта на блоке питания компьютера. Блок питания компьютера, его разъёмы и напряжения

Блок питания — «сердце» электроснабжения компонентов компьютера. Он преобразует входящее переменное напряжение в постоянный ток напряжением +3,3 В, +5 В, +12 В.


1. Блок питания компьютера, его разъёмы и напряжения

2. Расчёт мощности

3. Основные характеристики блоков питания

Блок питания компьютера, его разъёмы и напряжения

Компоненты компьютера используют следующие напряжения:

3,3В — Материнская плата, модули памяти, платы PCI, AGP, PCI-E, контроллеры

5В — Дисковые накопители, приводы, PCI, AGP, ISA

12В — Приводы, карты AGP, PCI-E

Как видно одни и те же компоненты могут использовать разные напряжения.

Функция PS_ON
позволяет выключить и включить блок питания программно. Эта функция выключает блок питания когда операционная система завершит свою работу.

Сигнал Power_Good.
При включении компьютера блок питания проводит самотестирование. И если выходные напряжения питания в норме он посылает сигнал на материнскую плату в чип управления питанием процессора. Если он не получит такой сигнал, система не запустится.

Бывает так что на блоке питания не хватает необходимых разъёмов. Выйти из положения можно, применяя различные переходники и разветвители:

Расчёт мощности

Мощности на выходе по каждой линии обычно написаны на наклейке блока питания и расчитываются по формуле:

Ватты (Вт) = Вольты (В) х Амперы (А)

Тем самым сложив все мощности по каждой линии получим общую мощность блока питания.

Однако, часто выходная мощность не соответствует заявленной. Лучше брать немного более мощный блок, чтобы компенсировать возможную нехватку мощности.

Предпочтение думаю лучше отдавать проверенным брендам, однако не факт что блок будет качественным. Проверить можно только одним способом — вскрыть его. Должны быть массивные радиаторы, входные конденсаторы большой ёмкости, качественный трансформатор, должны быть распаяны все детали

Основные характеристики блоков питания

Блоки питания не могут работать без нагрузки. При его проверки, к нему необходимо подключить что-нибудь. Иначе он может сгореть или, при наличии защиты, он отключится.

Запустить его можно закорачиванием двух проводков на основном разъёме ATX, зелёного и любого чёрного.

Характеристики:

  • Наработка на отказ. Примерно должна быть более 100000 часов
  • Входной диапазон напряжений (американский (120В) или европейский (220В)). Возможно присутствие переключателя режимов работы или автоматическое определение.
  • Время отключения блока питания при кратковременном отключении электричества. 15-30мс является стандартом, но чем больше тем лучше. Тем самым при пропадании электричества, у Вас система останется в рабочем состоянии, а не уйдёт в перезагрузку
  • Стабилизация напряжения на выходах при включении устройства (привода, жёсткого диска). Так как на неиспользуемое устройство подаётся пониженное напряжение
  • Отключение линии при превышении на ней напряжения к устройству
  • Максимальная нагрузка на линию. По этому показателю можно определить сколько устройств можно подключить к одной линии.
  • Стабилизация напряжения на выводах линий при изменении входящего напряжения.
  • Мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

    И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!

    Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС) эквивалентное последовательное сопротивление. При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.

    Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме. Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

    Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания. Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

    Схема БП АТХ Powerman

    Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:

    Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока. Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.

    В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.

    Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.

    Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.

    После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.

    Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.

    Как видно из таблицы, допуск для +3.3, +5, +12 вольт — 5%, для -5, -12 вольт — 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

    Блок питания для компьютера

    Главная функция блока питания — обеспечить подачу к элементам электросхемы компьютера постоянного стабилизированного напряжения с заданными характеристиками. Соедовательно главная задача бп — функции стабилизации напряжения для питания всех компонентоыв пк и защиты от незначительных помех питающего напряжения; а также будучи снабжён вентилятором, БП участвует в охлаждении компонентов внутри системного блока персонального компьютера. При правильном выборе блок будет работать с максимальным КПД, а комплектующие не будут испытывать недостатка в питании.

    Основные характеристики современных блоков питания:

    Габариты.

    Самые распространенные БП для настольных компьютеров относятся к форм-фактору ATX с дополнительным 12-вольтовым разъемом питания и имеют стандартные габариты 150х86х140 мм. Они строго выдерживаются всеми производителями, следовательно можно легко менять один блок питания на другой. Однако модели повышенной мощности, как правило, имеют нестандартные, увеличенные габариты, что вызвано необходимостью установки двух силовых трансформаторов, способных выдать нужную мощность. Речь идет о блоках питания мощностью 1000 Вт и выше — они длиннее стандартных примерно на 40-50 мм.

    Мощность.

    На выходе блок питания выдает следующие напряжения +3.3 v, +5 v, +12 v и некоторые вспомогательные -12 v и + 5 VSB. Основная нагрузка ложится на линию +12 V.
    Мощность (W — Ватт)расчитывается по формуле P = U x I, где U – это напряжение (V — Вольт), а I – сила тока (A — Ампер). Отсюда вывод, чем больше сила тока по каждой линии, тем больше мощность. Но не все так просто, допустим при большой нагрузке по комбинированной линии +3.3 v и +5 v, может уменьшиться мощность на линии +12 v. Разбирем пример на основе маркировки блока питания AEROCOOL E85-700.

    Указано, что максимальная суммарная мощность по линиям +3.3V и +5V = 150W, также указано, что максимальная мощность по линии +12V = равна 648W. Обратите внимание, что указаны две виртуальные линии +12V1 и +12V2 по 30 Ампер каждая – это вовсе не означает, что общий ток 60А, так как при токе в 60А и напряжении 12V, мощность бы была 720W (12×60=720). На самом деле указан максимально возможный ток на каждой линии. Реальный же максимальный ток легко рассчитать по формуле I=P/U, I = 648 / 12 = 30 Ампер. Общая мощность 700W.

    Расчет мощности блока питания.

    Для расчета мощности блока питания можете воспользоваться этим калькулятором , сервис на английском языке, но думаю разобраться можно.
    По своему опыту могу заметить, что для офисного компьютера вполне достаточно блока питания на 350W. Для игрового хватит БП на 400 — 500W, для самых мощных игровых с мощной видеокартой или с двумя в режиме SLI или Crossfire – необходим блок на 600 — 700W.
    Процессор обычно потребляет от 35 до 135W, выдеокарта от 30 до 340W, материнская плата 30-40W, 1 планка памяти 3-5W, жесткий диск 10-20W. Учитывайте также, что основная нагрузка ложится на линию 12V. Да, и не забудьте добавить запас 20-30% с расчетом на будущее.

    КПД.

    Не маловажным будет КПД блока питания. КПД (коэффициент полезного действия) — это отношение выходной мощности к потребляемой. Если бы блок питания мог преобразовать электрическую энергию без потерь, то его КПД был 100%, но пока это невозможно.
    Например, для того, чтобы блоку питания с КПД 80% обеспечить на выходе мощность 400W, он должен потреблять от сети не больше 500W. Тот же блок питания, но с КПД 70%, будет потреблять около 571W. Опять же, если блок питания не сильно нагружен, например на 200W, то и потреблять от сети он будет тоже меньше, 250W при КПД 80% и приблизительно 286 при КПД 70%.
    Существует организация, которая тестирует блоки питания на соответствие определенному уровню сертификации. Сертификация 80 Plus проводилась только для электросети 115В распространенной, например в США. Начиная с уровня 80 Plus Bronze, блоки питания тестируются для использования в электросети 230В. Например, для прохождения сертификации уровня 80 Plus Bronze КПД блока питания должен быть 81% при нагрузке 20%, 85% при нагрузке 50% и 81% при нагрузке 100%.

    Наличие одного из логотипов на блоке питания говорит о том, что блок питания соответствует определенному уровню сертификации.
    Плюсы блока питания с высоким КПД:
    Во-первых, меньше энергии выделяется в виде тепла, соответственно системе охлаждения блока питания нужно отводить меньше тепла, следовательно, и шума от работы вентилятора меньше. Во-вторых, небольшая экономия на электричестве. В-третьих, качество у данных БП высокое.

    Активный и пассивный PFC

    PFC (Power Factor Correction)
    – Коррекция фактора (коэффициента) мощности. Фактором мощности называется отношение активной мощности к полной (активной + реактивной).
    Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная. Нагрузкой реактивная мощность не потребляется – полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, впустую нагружая питающие провода. Получается, что от реактивной мощности толку ноль, и с ней по возможности борются, с помощью различных корректирующих устройств.
    PFC — бывает пассивным и активным.
    Преимущества активного PFC:
    Активный PFC обеспечивает близкий к идеальному коэффициент мощности (у активного 0.95-0.98 против 0.75 у пассивного).
    Активный PFC стабилизирует входное напряжение основного стабилизатора, блок питания становится менее чувствительным к пониженному сетевому напряжению.
    Активный PFC улучшает реакцию блока питания во время кратковременных провалов сетевого напряжения.
    Недостатки активного PFC:
    Снижает надежность блока питания, так как усложняется устройство самого блока питания. Требуется дополнительное охлаждение. В целом преимущества активного PFC перевешивают его недостатки.
    В принципе можно не обращать внимания на тип PFC. В любом случае, при покупке блока питания меньшей мощности, в нем, скорее всего, будет пассивный PFC, при покупке более мощного блока от 500 W – вы, скорее всего, получите блок с активным PFC.

    Система охлаждения блоков питания.

    Наличие в блоке питания, вентилятора считается нормой, его диаметр чаще всего 120, 135 или 140 мм. Блоки с вентиляторами 80 мм постепенно уходят в прошлое большей частью используются в маломощных системах.

    Кабели и разъемы.


    Обратите внимание на количество разъемов и длину кабелей идущих от блока питания, в зависимости от высоты корпуса нужно выбрать БП с соответствующими по длине кабелями. Для небольшого корпуса достаточно длины 40-45 см.

    Современный блок питания имеет следующие разъемы:

    1
    24-х контактный разъем для питания материнской платы. Обычно раздельный 20 + 4 контакта, бывает и цельный.

    2\3
    Разъем процессора. Обычно 4-х контактный, для более мощных процессоров используется 8-и контактный.

    4
    Разъем для дополнительного питания видеокарты. 6-и и 8-и контактный. 8-и контактный иногда сборный 6+2 контакта.

    6
    Разъем SATA для подключения жестких дисков и оптических приводов.

    5
    4-х контактный разъем (Molex) для подключения старых IDE жестких дисков и оптических приводов, вентиляторов.

    7
    4-х контактный разъем для подключения дисководов FDD.

    Модульные кабели и разъемы.

    Многие более мощные блоки питания сейчас используют модульное подключение кабелей с разъемами. Это удобно, тем, что нет надобности, держать неиспользуемые кабели внутри корпуса, к тому же меньше путаницы с проводами, просто добавляем по мере необходимости. Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в этих блоках питания несъемные только разъемы для питания материнской платы и процессора.

    Производители.


    Производители блоков питания делятся на три группы:

    1. Производят свою продукцию – это такие бренды, как FSP, Aerocool, Enermax, HEC, Seasonic, Delta, Hipro.

    2. Производят свою продукцию, частично перекладывая производство на другие компании, например Corsair, Antec, Silverstone, Zalman.

    3. Перепродают под собственной маркой — например Chiftec, Cooler Master, Gigabyte, OCZ, Thermaltake.

    Можно смело приобретать продукцию этих брендов. В интернете можно найти обзоры и тесты многих блоков питания и ориентироваться по ним.

    современный стандарт бп:
    ATX12V 2.2

    Стандарт ATX12V последней версии 2.2 был принят в 2005 году. Именно тогда произошел переход на 12-вольтовое питание стабилизатора процессора, в результате чего 5-вольтовая шина утратила былое значение. В целях безопасности в стандарте было предусмотрено ограничение по силе тока (не более 18 А) на каждую линию шину +12 В.
    Документ установил минимальную энергоэффективность (КПД) для блока питания — 70% при полной, 72% при нормальной (около 50%) и 65% при легкой (около 20%) нагрузке. Рекомендуемый КПД — 77% при полной, 80% при нормальной и 75% при легкой нагрузке.
    Вместо основного разъема питания 2х10 появился новый разъем 2х12, в котором реализованы линии питания для шины PCI Express (до 75 Вт). Поскольку в разъеме появились дополнительные контакты +12 В, +5 В и +3,3 В, отпала необходимость в разъеме Aux Power, и от него отказались.

    Здравствуйте, уважаемые читатели! Сегодня мы с вами займемся сугубо практическим делом. Если вы интересуетесь «железом» компьютера, то хорошо закрепить теоретические знания практикой, правильно?

    Допустим, вы купили новый для компьютера. Или вы хотите заменить сгоревший блок другим, бывшим в употреблении.

    Можно поставить его сразу (и сыграть в лотерею), но лучше перед установкой проверить. Вы же хотите узнать, как это сделать, не так ли?

    Источник дежурного напряжения

    Сначала немного теории. Куда же без нее!

    Компьютерный содержит в себе источник дежурного напряжения
    (+5 VSB).

    Если вилка блока питания вставлена в сеть, это напряжение будет присутствовать на контакте 21 основного разъема (если разъем 24- контактный).

    Этот дежурный источник питания запускает основной инвертор. К этому контакту приходит фиолетовый (чаще всего) провод.

    Необходимо замерить это напряжение относительно общего провода (обычно черного цвета) цифровым мультиметром.

    Оно должно находиться в пределах + 5 +-5%, т. е. быть в диапазоне от 4,75 до 5,25 В
    .

    Если оно будет меньше, компьютер может не включиться (или будет включаться «через раз»). Если оно будет больше, компьютер может «подвисать».

    Если это напряжение отсутствует, питающий блок не запустится
    !

    Облегченная нагрузка блока питания

    Если дежурное напряжение находится в норме, необходимо подключить к одному из разъемов нагрузку в виде мощных резисторов
    (см. фото).

    К шине +5 В можно подключить резистор величиной 1 — 2 Ом, к шине +12 В ― величиной 3 ― 4 Ом.

    Мощность резисторов должна быть не менее 25 Вт.

    Это далеко не полная величина нагрузки. К тому же шина + 3,3 В остается вообще ненагруженной.

    Но это необходимый минимум, при котором питающий блок (если он исправен) должен без «вреда для своего здоровья» запуститься.

    Резисторы следует припаять к ответной части разъема, который можно взять, например, от неисправного внешнего вентилятора корпуса.

    Запуск блока питания

    После того как нагрузка подключена, следует замкнуть контакт PS-ON (чаще всего ― зеленого цвета) с соседним общим (обычно черного цвета) проводником.

    Контакт PS-ON — четвертый слева в верхнем ряду, если ключ расположен сверху.

    Замкнуть можно с помощью скрепки. Блок питания должен запуститься. При этом начнут вращаться лопасти вентилятора охлаждения.

    Напоминаем, что компьютерный блок питания лучше не включать без нагрузки!

    Во-первых, в нем есть цепи защиты и контроля, которые могут не разрешить основному инвертору запуститься. Во-вторых, в «облегченных» блоках эти цепи могут вообще отсутствовать. В худшем случае дешевый питающий блок может выйти из строя. Поэтому дешевые блоки питания не покупайте!

    Контроль выходных напряжений

    На всех разъемах появятся выходные напряжения. Следует замерить все выходные напряжения . Они должны находиться в пределах 5% допуска:

      напряжение + 5 В должно находиться в пределах + 4,75 ― 5, 25 В
      ,

      напряжение +12 В ― в пределах 11,4 ― 12,6 В,

      напряжение +3,3 В ― в пределах 3,14 ― 3,47 В

    Значение напряжения в канале + 3,3 В может оказаться выше + 3,47 В. Это связано с тем, что этот канал остается без нагрузки.

    Но, если остальные напряжения в пределах нормы, то с высокой долей вероятности можно ожидать того, что и напряжение в канале + 3,3 В под нагрузкой окажется в пределах нормы.

    Отметим, что допуск 5% в верхнюю сторону для напряжения + 12 В великоват
    .

    Этим напряжением питаются шпиндели винчестеров. При напряжении + 12,6 В (верхняя граница допустимого диапазона) управляющая шпинделем микросхема-драйвер сильно перегревается и может выйти из строя. Поэтому желательно, чтобы это напряжение было поменьше — 12,2 – 12,3 В (естественно, под нагрузкой).

    Следует сказать, что могут быть случаи, когда блок на этой нагрузке работает, а на реальной (которая существенно больше), напряжения «проседают».

    Но так бывает сравнительно редко, это вызвано скрытыми неисправностями. Можно сделать, так сказать, «честную» нагрузку, имитирующую реальный режим работы.

    Но это не так просто! Современные питающие блоки могут отдавать мощность 400 ― 600 Вт и более. Для проверки работы с переменной нагрузкой надо будет коммутировать мощные резисторы.

    Необходимы мощные коммутационные элементы. Все это будет греться…

    Предварительный вывод о работоспособности можно сделать и при облегченной нагрузке, и это вывод будет достоверен более чем в 90% случаев.

    Несколько слов о вентиляторах

    Если , бывшего в употреблении, сильно шумит, он, скорее всего, нуждается в смазке. Или, если он сильно изношен, в замене.

    Больше всего это касается небольших вентиляторов диаметром 80 мм, которые устанавливаются на заднюю стенку блока питания.

    Вентилятор диаметром 120-140 мм для обеспечения необходимого воздушного потока вращается с меньшей скоростью, поэтому шумит меньше.

    В заключение отметим, что качественный блок питания имеет «умную» схему управления, которая управляет оборотами вентилятора в зависимости от температуры или нагрузки. Если температура радиаторов с силовыми элементами (или нагрузка) невелика, вентилятор вращаются с минимальными оборотами.

    При повышении температуры или увеличении тока нагрузки обороты вентилятора увеличиваются. Это снижает шум.

    С вами был Виктор Геронда.

    Диагностика компьютерного блока питания — это первый этап в поиске неисправностей в системном блоке, если тот вообще не подает сигналов жизни.

    В жизни каждого радиолюбителя рано или поздно наступает момент, когда ему приходится начинать осваивать мелкий ремонт техники. Это могут быть настольные компьютерные колонки, планшет, мобильный телефон и еще какие-нибудь гаджеты. Не ошибусь, если скажу, что почти каждый радиолюбитель пробовал чинить свой компьютер. Кому-то это удавалось, а кто-то все таки нес его в сервис-центр.

    В этой статье мы с вами разберем основы самостоятельной диагностики неисправностей блока питания ПК.

    Давайте предположим, что нам в руки попался блок питания (БП) от компьютера. Для начала нам надо убедиться, рабочий ли он?Кстати, нужно учитывать, что дежурное напряжение +5 Вольт
    присутствует сразу после подключения сетевого кабеля к блоку питания.

    Если его нету, то не лишним будет прозвонить шнур питания на целостность жил мультиметром в режиме звуковой прозвонки. Также не забываем прозвонить кнопку и предохранитель. Если с сетевым шнуром все ОК, то
    включаем блок питания ПК в сеть и запускаем без материнской платы путем замыкания двух контактов: PS-ON
    и COM
    . PS-ON сокращенно с англ. — Power Supply On —
    дословно как «источник питания
    включить»
    . COM сокращенно от англ. Сommon
    — общий. К контакту PS-ON подходит провод зеленого цвета, а «общий» он же минус — это провода черного цвета.

    На современных БП идет разъем 24 Pin. На более старых — 20 Pin.

    Замкнуть эти два контакта проще всего разогнутой канцелярской скрепкой

    Хотя теоретически для этой цели сгодится любой металлический предмет или проводок. Даже можно использовать тот же самый пинцет.

    Исправный блок питания у нас должен сразу включиться. Вентилятор начнет вращаться и появится напряжение на всех разъемах блока питания.

    Если наш компьютер работает со сбоями, то нелишним будет проверить на его разъемах соответствие величины напряжения на его контактах. Да и вообще, когда компьютер глючит и часто вылазит синий экран, неплохо было бы проверить напряжение в самой системе, скачав небольшую программку для диагностики ПК. Я рекомендую программу AIDA. В ней сразу можно увидеть, в норме ли напряжение в системе, виноват ли в этом блок питания или все-таки «мандит» материнская плата, или даже что-то другое.

    Вот скрин с программы AIDA моего ПК. Как мы видим, все напряжения в норме:

    Если есть какое-либо приличное отклонение напряжения, то это уже ненормально. Кстати, покупая б/у компьютер, ВСЕГДА закачивайте на него эту программку и полностью проверяйте все напряжения и другие параметры системы. Проверено на горьком опыте:-(.

    Если же все-таки величина напряжения сильно отличается на самом разъеме блока питания, то блок надо попытаться отремонтировать. Если вы вообще очень плохо дружите с компьютерной техникой и ремонтами, то при отсутствии опыта его лучше заменить. Нередки случаи, когда НЕисправный блок питания при выходе из строя “утягивал” за собой часть компьютера. Чаще всего при этом выходит из строя материнская плата. Как этого можно избежать?

    Рекомендации по выбору блоков питания для ПК

    На блоке питания экономить никогда нельзя и нужно всегда иметь небольшой запас по мощности. Желательно не покупать дешевые блоки питания NONAME.

    и POWER MAN

    Как быть, если вы слабо разбираетесь в марках и моделях блоков питания, а на новый и качественный мамка не дает денег))?
    Желательно, чтобы в нем стоял вентилятор 12 См, а не 8 См.

    Ниже на фото блок питания с вентилятором 12 см.

    Такие вентиляторы обеспечивают лучшее охлаждение радиодеталей блока питания. Нужно также помнить еще одно правило: хороший блок питания не может быть легким
    . Если блок питания легкий, значит в нем применены радиаторы маленького сечения и такой блок питания будет при работе перегреваться при номинальных нагрузках. А что происходит при перегреве? При перегреве некоторые радиоэлементы, особенно полупроводники и конденсаторы, меняют свои номиналы и вся схема в целом работает неправильно, что конечно же, скажется и на работе блока питания.

    Самые частые неисправности

    Также не забывайте хотя бы раз в год чистить свой блок питания от пыли. Пыль является «одеялом» для радиоэлементов, под которым они могут неправильно функционировать или даже «сдохнуть» от перегрева.

    Самая частая поломка БП — это силовые полупроводнки и конденсаторы . Если есть запах горелого кремния, то надо смотреть, что сгорело из диодов или . Неисправные конденсаторы определяются визуальным осмотром. Раскрывшиеся, вздутые, с подтекающим электролитом — это первый признак того, что надо срочно их менять.

    При замене надо учитывать, что в блоках питания стоят конденсаторы с низким эквивалентным последовательным сопротивлением (ESR)
    . Так что в этом случае вам стоит обзавестись ESR-метром и выбирать конденсаторы как можно более с низким ESR. Вот небольшая табличка сопротивлений для конденсаторов различной емкости и напряжений:

    Здесь надо подбирать конденсаторы таким образом, чтобы значение сопротивления было не больше, чем указано в таблице.

    При замене конденсаторов важны еще также два параметра: емкость и их рабочее напряжение. Они указываются на корпусе конденсатора:

    Как быть, если в магазине есть конденсаторы нужного номинала, но рассчитанные на большее рабочее напряжение? Их также можно ставить в схемы при ремонте, но нужно учитывать, что у конденсаторов, рассчитанных на большее рабочее напряжение обычно и габариты больше.

    Если у нас блок питания запускается, то мы меряем напряжение на его выходном разъеме или разъемах мультиметром. В большинстве случаев при измерении напряжения блоков питания ATX, бывает достаточно выбрать предел DCV 20 вольт.

    Существуют два способа диагностики:

    — проведение измерений на “горячую” во включенном устройстве

    — проведение измерений в обесточенном устройстве

    Что же мы можем померять и каким способом проводятся эти измерения? Нас интересует измерение напряжения в указанных точках блока питания, измерение сопротивления между определенными точками, звуковая прозвонка на отсутствие или наличие замыкания, а также измерение силы тока. Давайте разберем подробнее.

    Измерение напряжения

    Если вы ремонтируете какое-либо устройство и имеете принципиальную схему на него, на ней часто указывается, какое напряжение должно быть в контрольных точках на схеме. Разумеется, вы не ограничены только этими контрольными точками и можете померять разность потенциалов или напряжение в любой точке блока питания или любого другого ремонтируемого устройства. Но для этого вы должны уметь читать схемы и уметь их анализировать. Более подробно, как измерять напряжение мультиметром, можно прочитать в этой статье.

    Измерение сопротивления

    Любая часть схемы имеет какое-то сопротивление. Если при замере сопротивления на экране мультиметра единица, это значит, что в нашем случае сопротивление выше, чем предел измерения сопротивления выбранный нами. Приведу пример, например, мы измеряем сопротивление части схемы, состоящей условно, из резистора известного нам номинала, и дросселя. Как мы знаем, дроссель — это грубо говоря, всего лишь кусок проволоки, обладающий небольшим сопротивлением, а номинал резистора нам известен. На экране мультиметра мы видим сопротивление несколько большее, чем номинал нашего резистора. Проанализировав схему, мы приходим к выводу, что эти радиодетали у нас рабочие и с ними обеспечен на плате хороший контакт. Хотя поначалу, при недостатке опыта, желательно прозванивать все детали по отдельности. Также нужно учитывать, что параллельно подключенные радиодетали влияют друг на друга при измерении сопротивления. Вспомните параллельное подключение резисторов и все поймете. Более подробно про измерение сопротивления можно прочитать .

    Звуковая прозвонка

    Если раздается звуковой сигнал, это означает, что сопротивление между щупами, а соответственно и участком цепи, подключенных к её концам, рано нулю, или близко к этому. С её помощью мы можем убедиться в наличии или отсутствии замыкания, на плате. Также можно обнаружить есть контакт на схеме, или нет, например, в случае обрыва дорожки или непропая, или подобной неисправности.

    Измерение протекающего тока в цепи

    При измерениии силы тока в цепи, требуется вмешательство в конструкцию платы, например путем отпаивания одного из выводов радиодетали. Потому что, как мы помним, амперметр у нас подключается в разрыв цепи. Как измерить силу тока в цепи, можно прочитать в этой статье.

    Используя эти четыре метода измерения с помощью одного только мультиметра можно произвести диагностику очень большого количества неисправностей в схемах практически любого электронного устройства.

    Как говорится, в электрике есть две основных неисправности: контакт есть там, где его не должно быть, и нет контакта там, где он должен быть
    . Что означает эта поговорка на практике? Например, при сгорании какой-либо радиодетали мы получаем короткое замыкание, являющееся аварийным для нашей схемы. Например, это может быть пробой транзистора. В схемах может случится и обрыв, при котором ток в нашей цепи течь не может. Например, разрыв дорожки или контактов, по которым течет ток. Также это может быть обрыв провода и тому подобное. В этом случае наше сопротивление становится, условно говоря, бесконечности.

    Конечно, существует еще третий вариант: изменение параметров радиодетали. Например, как в случае с тем же электролитически м конденсатором, или подгорание контактов выключателя, и как следствие, сильное возрастание их сопротивления. Зная эти три варианта поломок и умея проводить анализ схем и печатных плат, вы научитесь без труда ремонтировать свои электронные устройства. Более подробно про ремонт радиоэлектронных устройств можно прочитать в статье «Основы ремонта «.

    ИСПОЛЬЗОВАНИЕ КОМПЬЮТЕРНОГО БЛОКА ПИТАНИЯ БЕЗ ПК

    Необходимость подать питание на адаптер для подключения жесткого внешнего диска через гнездо USB к персональному компьютеру заставила вспомнить о давно пылившемся на антресолях блоке питания JNC LC-200A. Напряжение 12 и 5 вольт в наличии есть, тока в достатке. Да что там говорить — профильный блок питания в подобных ситуациях всегда лучший вариант.

    Свою функцию он выполнил успешно. Другой источник питания для этих целей решил не искать, вот только смущает обилие проводов выходящих из него наружу. И выход тут один, раз уж решил использовать его постоянно – необходима доработка.

    Разобрал блок питания на отдельные узлы, покрасил корпус, просверлил в нижней части  отверстия для клемм и установки на днище резиновых ножек (которые и поставил в первую очередь, а то пока соберешь, весь стол железом днища обдерешь).

    Клеммы поставил на все виды имеющихся напряжений, пусть будут. Красные «+12», «+5», «+3,3» вольта, а чёрные «0», «-12», «-5». Тем более, что используя их различное сочетание, можно получить весьма широкий спектр постоянных выходных напряжений.

    Взялся за плату. Провода, идущие на вентилятор, ранее были просто запаяны – установил разъём на случай необходимости разборки блока питания в дальнейшем.

    Из выводных проводов нетронутыми оставил два жгута, остальные укоротил и объединил (в соответствии с цветом и конечно же выходным напряжением).

    Плату на место, укороченные провода к клеммам, цельные жгуты вывел наружу.

    Затем поставил на место разъём сетевого питания и выключатель, причём последний, раньше располагался вне корпуса на полуметровом кабеле, но в итоге был интегрирован в имевшуюся и не используемую верхнюю сетевую розетку. Вентилятор установил так, чтобы он гнал воздух внутрь корпуса. Вот тут посмотрите как стартовать БП без ПК.

    Привернул верхнюю часть корпуса  на место, на одном выводном жгуте оставил разъём питания для подключения жёстких дисков c интерфейсом IDE, на другой установил разъём для дисков с интерфейсом SATA. Клеммы питания подписал самым простым и доступным образом — распечатал необходимые обозначения, наклеил сверху текста скотч, вырезал и приклеил.

    Обратная сторона собранного блока питания. Кнопка включения расположилась в удобной нише, случайное включение или выключение её практически невозможно. И это не мелочь, так как при несанкционированном отключении питания от подключённого к компьютеру жесткого внешнего диска возможны неблагоприятные последствия. Пользоваться доработанным блоком питания для подключения ЖВД несравненно удобней, сказал бы даже комфортно. Плюс к этому возможность использования блока питания и для получения других самых различных постоянных напряжений. 

    Получение разных напряжений — таблица соединений

    Получаем Соединяем
    24.0V 12V и -12V
    17.0V 12V и -5V
    15.3V 3.3V и -12V
    10.0V 5V и -5V
    8.7V 12V и 3.3V
    8.3V 3.3V и -5V
    7.0V 12V и 5V
    1.7V 5V и 3.3V

    Также БП стал более компактным и мобильным, поэтому применений ему будет масса — необходимость в мощном и отдельном источнике различных напряжений возникает часто. Автор проекта — Babay iz Barnaula.

       Форум по БП

       Форум по обсуждению материала ИСПОЛЬЗОВАНИЕ КОМПЬЮТЕРНОГО БЛОКА ПИТАНИЯ БЕЗ ПК

    Блок питания адаптера 12 В

    Категории

    Close Outs!

    Еженедельная распродажа

    Новые продукты

    Ардуино

    Малина Pi

    Электронные корпуса и боксы

    Кабель, шнуры и провода

    Химическая промышленность, электроника

    Компоненты электронные

    Разъемы

    Компьютерные аксессуары

    Модули охлаждения термоэлектрические Пельтье

    Счетчики и таймеры

    Электронные комплекты

    Вентиляторы осевые

    Предохранители электронные

    Радиаторы

    Термоусадочные трубки

    ЖК-дисплеи

    Светодиодные фонарики

    Светодиодные и Светодиодные Дисплеи

    Лазеры и линзы

    Магниты

    Электронные двигатели и компоненты

    Панельные счетчики и измерительные шунты

    Печатные платы

    Шнуры питания

    Блоки питания

    19-дюймовые стоечные системы

    Реле — Power

    Паяльное оборудование

    Колонки и сирены

    Шаговые двигатели и драйверы

    Переключатели электронные

    Телефон

    Испытательное оборудование, электронное

    Термостаты цифровые

    Инструменты электронные

    Трансформаторы силовые

    УФ лампы

    Клапаны и цилиндр

    Видео, видеонаблюдение и безопасность

    Уникальные предметы

    Еженедельный флаер, страница 2

    Еженедельный флаер

    Сортировать по
    Цена низкая-> высокая
    Цена высокая-> низкая
    Название A-> Z
    Название Z-> A
    Код товара A-> Z
    Код товара Z-> A
    Популярность
    Самые популярные

    12-вольтный адаптер питания, вероятно, является наиболее широко используемым адаптером питания.Адаптер источника питания на 12 В — это возврат к ранним дням развития электроники, когда обычным выходным напряжением батареи было 12 В. С переходом потребителя к использованию твердотельного оборудования в автомобиле, а затем и в быту, это было неизбежно, поскольку одна базовая конструкция была универсальной. Адаптер питания на 12 вольт, также известный как «кирпич», «настольная бородавка» и «напольный» источник питания, обеспечивает регулируемое выходное напряжение 12 вольт постоянного тока. Блок питания с адаптером на 12 В заключен в пластиковый защитный футляр, к которому прилагается либо прилагаемый шнур переменного тока, либо ответная розетка для одного из 3 распространенных наборов кабелей IEC.К 12-вольтовому адаптеру питания прилагается выходной шнур, который подключается к вашему оборудованию. Наши адаптеры на 12 В доступны с выходной мощностью от менее 10 Вт до более 60 Вт.

    Блок питания с адаптером на 12 В используется в: колодках, портативных компьютерах, освещении, мобильном оборудовании и многом другом. Сейчас они находят все больше потребительских игрушек, игр и других товаров для дома. Все они имеют сертификаты безопасности CE, UL, CSA, TUV или других листинговых компаний. Для блока питания с адаптером на 12 В доступно множество вариантов выходных шнуров, от оголенных выводов до разъемов практически любой конструкции, которые вы можете пожелать.Разъем Barrel, также известный как коаксиальный разъем питания, составляет большинство. Наиболее распространенные коаксиальные вилки имеют внешний диаметр 5,5 мм с внутренним диаметром 2,1 мм или 2,5 мм. Обратите внимание, что они не взаимозаменяемы. Всегда убедитесь, что выходной разъем соответствует вашему оборудованию, так как существует более 100 стандартных типов.
    Блок питания адаптера 12 В, блок питания адаптера 12 В Блок питания адаптера 12 В, вероятно, является наиболее широко используемым адаптером питания. Вы найдете блок питания 12 В для вашего проекта.Блок питания адаптера 12 В, блок питания адаптера 12 В, настольный блок питания 12 В

    Подробнее …

    Напряжение / время, которое работает с определенным оборудованием

    Настольные компьютеры полагаются на блоки питания в качестве основных источников энергии. Неопытному глазу блок питания может показаться довольно устрашающим. Несоответствующая проводка может нанести вред вашему ПК и привести к сгоранию блока питания и материнской платы.Тем не менее, XOTIC PC имеет почти 20-летний опыт работы с компьютерным оборудованием. В этом руководстве мы исследуем рабочую структуру, значение цветных проводов и взаимосвязь между напряжением и током и выходной мощностью.

    Введение в блок питания ПК

    Блок питания компьютера состоит из нескольких внутренних компонентов, таких как катушки, конденсаторы и электронные платы для регулирования тока. Вашему блоку питания требуются вентиляторы для охлаждения внутренних компонентов, но вентиляторы являются одной из основных причин отказа источника питания.Вы также найдете цветные провода, прикрепленные к печатной плате, и эти провода используются для передачи различных напряжений на основную плату и любые подключенные устройства. Типичный блок питания ПК потребляет приблизительно 110 вольт переменного электрического тока из настенной розетки, который преобразуется в гораздо меньший однонаправленный электрический ток.

    Переменный ток (AC) определяет поток заряда, который периодически меняет направление. Напряжение переменного тока вырабатывается генератором переменного тока, который представляет собой особый вид электрического генератора, который используется для производства переменного тока.Постоянный ток (DC) можно описать как постоянное напряжение или ток, который генерируется выпрямителем, батареями или генератором переменного тока, оборудованным коммутатором. Современные источники питания оснащены несколькими цепями безопасности, которые непрерывно проверяют протекание тока для обнаружения экстремальных условий выходной мощности.

    Напряжение питания компьютера

    Существует три основных типа постоянного напряжения. Для питания материнской платы и любых видеокарт нового поколения требуется 12 Вольт.5 Вольт необходимо для корпуса и вентилятора процессора или портов USB. 3,3 Вольт используется для питания процессора. 12 В также можно подавать на специальные «умные» вентиляторы шасси. Блок питания может преобразовывать электрический ток 100 В в +12 В, -12 В, + 5 В, -5 В и +3,3 В. Печатная плата используется для передачи преобразованной электроэнергии через специальные наборы кабелей, чтобы вы могли питать компоненты и устройства на вашем компьютере. С помощью перечисленных выше компонентов переменное напряжение можно преобразовать в чистый постоянный ток.Конденсаторы для ПК предназначены для регулирования плавных, чистых токов в цепях вашего компьютера. Отрицательные напряжения относительно устарели на современном рынке, но вы захотите узнать, как их использовать, если вы устанавливаете новый блок питания в систему со старой материнской платой, имеющей слоты для шины ISA. Следуйте приведенному ниже общему руководству, чтобы определить шины напряжения.

    • +3,3 В: Наборы микросхем, DIMMS, карты PCI / AGP / PCIe и прочие микросхемы
    • +5 В: логика дисковода, низковольтные двигатели, модули SIMM, карты PCI / AGP / ISA и напряжение
    • +12 В: двигатели, регуляторы выходного напряжения и карты AGP / PCIe

    Цветовые коды блока питания

    Производители обычно предоставляют спецификации для своих блоков питания по запросу, но типичные блоки питания LPX на 250 Вт и ATX на 235 Вт можно определить по следующим параметрам:

    Черный: используется для заземления тока.Каждый другой цветной провод должен быть соединен с черным проводом.

    Желтый: используется для обозначения +12 Вольт

    • 250-ваттный LPX: максимум 10 ампер (120 ватт)
    • 235-ваттный ATX: максимум 8 ампер (96 Вт)

    Красный: используется для обозначения +5 В

    • LPX на 250 Вт: максимум 25 ампер (125 Вт)
    • ATX на 235 Вт: максимум 22 А (110 Вт)

    Синий: используется для обозначения -12 В

    • LPX мощностью 250 Вт: максимум 0.5 ампер (2,5 Вт)
    • 235-ваттный ATX: максимум 1 ампер (12 Вт)

    Белый: обозначает -5 В

    • LPX на 250 Вт: максимум 0,5 А (2,5 Вт)
    • ATX на 235 Вт: максимум 0,5 А (2,5 Вт)

    Оранжевый:

    • 235-ваттный ATX: используется для обозначения + 3,3 В или максимум 14 ампер (46,2 Вт)

    Зеленый: используется для проверки постоянного напряжения

    Пурпурный: используется для обозначения + 5 В в режиме ожидания

    Если у вас есть какие-либо вопросы о напряжениях и таймингах, которые работают с определенным оборудованием, свяжитесь с нами сегодня для получения дополнительной информации или помощи.Дайте нам знать, как мы можем помочь!

    Сколько напряжения требуется для компьютера

    Вы когда-нибудь задумывались, что на самом деле происходит внутри блока питания вашего компьютера? Блок питания — самый важный компонент, когда дело доходит до работы компьютера. Без блока питания компьютер представляет собой просто случайную коробку, полную металлических и пластиковых компонентов. С момента появления первого компьютера источник питания использовался для питания всех электронных устройств внутри него.

    И хотите верьте, хотите нет, за этим нет никакой магии. Напряжение переменного тока (AC) потребляется источником питания от источника электроэнергии и преобразуется в напряжение постоянного тока (DC). Питание компьютера обеспечивается несколькими компонентами: конденсаторы, катушки, вентилятор для охлаждения всего устройства и электронная плата, регулирующая ток. Помимо этого, к печатной плате необходимо подвести несколько кабелей с наборами проводов различимых цветов. Эти провода передают разное напряжение на другие подключенные к нему устройства, а также на материнскую плату.

    Сегодня несколько цепей безопасности оснащены современными источниками питания, которые непрерывно контролируют протекающий ток. При обнаружении экстремального состояния, которое может превысить его выходную мощность, источник питания предотвратит дальнейшее повреждение материнской платы и самого себя, отключившись.

    Компьютеры и напряжения

    Блок питания персонального компьютера представляет собой металлический ящик, который обычно можно найти в углу корпуса.Обычно он виден сзади многих систем, поскольку в нем есть охлаждающий вентилятор и розетка для шнура питания. Для работы компьютера требуются три типа постоянного напряжения. 12 В (В) используются для питания материнской платы и видеокарт нового поколения, 3,3 В используется для процессора, а 5 В используется для шасси и портов USB или вентилятора процессора. В источниках питания используется технология переключателя для преобразования переменного тока в более низкий постоянный ток.

    Преобразованная электроэнергия передается по выделенным кабелям от электронной платы в источнике питания для питания устройств, находящихся внутри компьютера.С помощью этих компонентов переменное напряжение преобразуется в чистый постоянный ток. Расположенные внутри конденсаторы выполняют почти половину работы, которую выполняет блок питания. Эти конденсаторы отвечают за регулирование чистых и плавных токов в ценных компьютерных схемах.

    Вы должны быть предупреждены, что даже если ваш компьютер был отключен от сети, внутри вашего блока питания все еще есть вероятность присутствия электричества. Это применимо даже через несколько дней после того, как вы вытащили вилку из розетки.Это работа конденсаторов: хранить энергию, которую можно использовать для обеспечения непрерывного рабочего процесса.

    Основные характеристики блока питания указаны в ваттах. Ватт — это произведение силы тока в амперах или амперах и напряжения в вольтах. Если ваш опыт работы с ПК немного устарел, вы можете вспомнить, что на исходных ПК были большие и красные переключатели, и они были относительно тяжелыми. Эти переключатели управляли напряжением 120 В, подаваемым на источник питания.

    Сегодня небольшая кнопка включает питание, а затем параметр меню используется для выключения машины.Стандартные блоки питания смогли получить это обновление несколько лет назад. Блок питания может получить сигнал от операционной системы о необходимости выключения. 5-вольтовый сигнал посылается кнопкой на источник питания, сообщая ему, когда его включить. В блоке питания содержится цепь, которая подает напряжение 5 В, называемое «резервным напряжением», которое позволяет кнопке работать, даже если она официально «выключена».

    Источники питания были громоздкими и тяжелыми до 1980-х годов.Огромные конденсаторы (большие банки с газировкой), большие и тяжелые трансформаторы использовались для преобразования линейного напряжения 120 В и 60 Гц (Гц) в 5 В и 12 В постоянного тока. Сегодня используемые импульсные источники питания намного легче и меньше и могут преобразовывать 60 Гц в более высокую частоту, что означает большее количество циклов в секунду. Кроме того, небольшой легкий трансформатор, расположенный в источнике питания, позволяет преобразовать его для понижения напряжения с 110 В (или 220 в зависимости от региона) до напряжения, необходимого для компонента компьютера.

    Цветовое обозначение провода

    Знаете ли вы о цветовой кодировке блока питания? Вы обязательно увидите множество цветных наборов кабелей, выходящих наружу с разными разъемами или розетками и разным количеством проводов внутри источника питания. Черные провода используются в качестве заземления для тока. Поэтому рекомендуется соединять провода любого другого цвета с черным проводом. Желтые и синие провода обозначают +12 В и -12 В соответственно. Красные и белые провода обозначают + 5В и -5В соответственно.Оранжевый провод обозначает 3,3 В, а фиолетовый провод обозначает + 5 В, когда он находится в режиме ожидания.

    Как проверить напряжение источника питания?

    Теперь, когда мы знакомы с цветными проводами и их напряжениями, вы можете задаться вопросом, может ли потребитель измерить эти напряжения, чтобы убедиться, что они выдают достаточное напряжение. Здесь на помощь приходит вольтметр (также называемый мультиметром). Чтобы проверить напряжение, включите мультиметр и переключите его на диапазон постоянного напряжения.Затем, предпочтительно, используя предел менее 20 В, соедините кабели мультиметра с соответствующими гнездами, помня, что провод всегда используется для заземления. Теперь прикоснитесь к любым разъемам иглами кабеля мультиметра. Перед тем, как произвести измерение, необходимо свериться с инструкцией по эксплуатации мультиметра. Затем, конечно, вам также необходимо включить компьютер.

    Неправильная конфигурация может привести к нежелательным результатам. Делая такой тест, вы должны быть очень осторожны. Проверка большей вилки блока питания должна быть самым простым способом проведения измерения.Присоедините черные кабели к черному, а остальные кабели присоедините к желтому или красному кабелю, так как у вас есть отверстия большего размера, в которые можно вставить иглы мультиметра. Было бы полезно, если бы вы никогда не подключали кабели собственного мультиметра к желтому и красному кабелям одновременно. Это может привести к короткому замыканию, которое может повредить материнскую плату.

    Проверка напряжения источника питания — не самое простое занятие в вашем списке дел. Однако заинтересованные пользователи могут решить сделать это, чтобы убедиться, что их блок питания работает должным образом или нет.Использование слишком большого количества длинных клапанов может повлиять на подачу напряжения, поскольку следует учитывать токи низкого напряжения. Это то, что обычно происходит, когда вы используете двухметровый USB-кабель для подключения флеш-накопителя. Падение напряжения в длинном кабеле может снизить эффективность работы внешнего запоминающего устройства или флеш-накопителя, которые потребляют энергию от порта USB.

    Ноутбуки также имеют блок питания. Каждое электронное устройство требует для работы некоторого источника энергии. Источником питания портативного компьютера является пара кабелей и адаптеров, которые используются для его зарядки.Адаптер преобразует напряжение переменного тока в напряжение постоянного тока и питает аккумулятор или плату управления питанием портативного компьютера.

    Заключение

    Наличие источника питания очень важно для работы компьютера. Блок питания компьютера имеет разное напряжение на шинах: + 3,3 В, + 5 В и +/- 12 В. Источник питания состоит из различных компонентов, таких как вентилятор, конденсаторы, печатная плата и катушки. Современные имеют несколько цепей безопасности, которые проверяют протекающий ток и отключаются при обнаружении чрезмерной выходной мощности.Способность компьютера производить мощность в ваттах делает компьютерный блок питания уникальным и способным питать компьютер.

    Компьютерные блоки питания — iFixit

    Блокам питания

    не хватает гламура, поэтому почти все воспринимают их как должное. Это большая ошибка, потому что блок питания выполняет две важные функции: он обеспечивает регулируемое питание для каждого компонента системы и охлаждает компьютер. Многие люди, жалующиеся на частые сбои Windows, по понятным причинам винят Microsoft.Но, не извиняясь перед Microsoft, правда в том, что многие такие сбои вызваны некачественными или перегруженными источниками питания.

    Если вам нужна надежная и безаварийная система, используйте высококачественный источник питания. Фактически, мы обнаружили, что использование высококачественного источника питания позволяет даже незначительным материнским платам, процессорам и памяти работать с разумной стабильностью, в то время как использование дешевого источника питания делает нестабильными даже первоклассные компоненты.

    Печальная правда в том, что купить компьютер с первоклассным блоком питания практически невозможно.Производители компьютеров буквально считают гроши. Хорошие блоки питания не приносят маркетинговых очков, поэтому немногие производители готовы тратить от 30 до 75 долларов дополнительно на лучший блок питания. Для своих линий премиум-класса производители первого уровня обычно используют так называемые блоки питания среднего уровня. Для массового рынка, потребительского класса, даже известные производители могут пойти на компромисс с блоком питания, чтобы соответствовать цене, используя то, что мы считаем предельными блоками питания как с точки зрения производительности, так и с точки зрения качества конструкции.

    В следующих разделах подробно описано, что вам нужно, чтобы понять, как выбрать хороший источник питания на замену.

    Наиболее важной характеристикой источника питания является его форм-фактор , который определяет его физические размеры, расположение монтажных отверстий, типы физических разъемов и их расположение выводов и т. Д. Все современные форм-факторы блоков питания заимствованы из оригинального форм-фактора ATX , опубликованного Intel в 1995 году.

    При замене блока питания важно использовать блок правильного форм-фактора, чтобы убедиться, что блок питания не только физически соответствует корпусу, но и обеспечивает правильные типы разъемов питания для материнской платы и периферийных устройств.В современных и новейших системах обычно используются три форм-фактора блоков питания:

    ATX12V Источники питания являются самыми большими физически, доступными в самых высоких номинальных мощностях и, безусловно, самыми распространенными. В полноразмерных настольных системах используются блоки питания ATX12V, как и в большинстве систем mini-, mid- и full-tower. Рисунок 16-1. показывает блок питания Antec TruePower 2.0, который представляет собой типичный блок ATX12V.

    Рисунок 16-1: Блок питания Antec TruePower 2.0 ATX12V (изображение любезно предоставлено Antec)

    SFX12V (s-for-small) блоки питания выглядят как уменьшенные блоки питания ATX12V и используются в основном в системах microATX и FlexATX малого форм-фактора.Источники питания SFX12V имеют меньшую мощность, чем блоки питания ATX12V, обычно от 130 Вт до 270 Вт для SFX12V по сравнению с 600 Вт или более для ATX12V и обычно используются в системах начального уровня. Системы, которые были построены с блоками питания SFX12V, могут принять замену ATX12V, если блок ATX12V физически подходит для корпуса.

    TFX12V (t-for-thin) блоки питания физически удлинены (по сравнению с кубической формой блоков ATX12V и SFX12V), но имеют мощность, аналогичную блокам SFX12V.Источники питания TFX12V используются в некоторых системах малого форм-фактора (SFF) с общим объемом системы от 9 до 15 литров. Из-за их необычной физической формы вы можете заменить блок питания TFX12V только другим блоком TFX12V.

    Хотя это менее вероятно, вы можете встретить источник питания EPS12V (используется почти исключительно в серверах), источник питания CFX12V (используется в системах microBTX) или источник питания LFX12V (используется в системах picoBTX) . Подробные спецификации для всех этих форм-факторов можно загрузить с http: // www.formfactors.org.

    МОДИФИКАТОР 12V

    В 2000 году, чтобы удовлетворить требованиям своих новых процессоров Pentium 4 + 12В, Intel добавила новый разъем питания + 12В в спецификацию ATX и переименовала спецификацию в ATX12V. С тех пор каждый раз, когда Intel обновляла спецификацию блока питания или создавала новую, ей требовался этот разъем +12 В и использовался модификатор 12 В в названии спецификации. В старых системах используются блоки питания не-12V ATX ​​или SFX.Вы можете заменить блок питания ATX блоком ATX12V или блок питания SFX блоком SFX12V (или, возможно, ATX12V).

    Изменения от старых версий спецификации ATX к более новым версиям и от ATX к более мелким вариантам, таким как SFX и TFX, были эволюционными, с учетом обратной совместимости. Все аспекты различных форм-факторов, включая физические размеры, расположение монтажных отверстий и кабельные разъемы, строго стандартизированы, что означает, что вы можете выбирать среди множества стандартных блоков питания для ремонта или модернизации большинства систем, даже более старых моделей.

    ВСЕ ПОДХОДЯЩИЕ СОКЫ

    При замене блока питания важно получить замену, подходящую для вашего корпуса. Если ваш старый блок питания имеет маркировку ATX 1.X или 2.X или ATX12V 1.X или 2.X, вы можете установить любой текущий блок питания ATX12V. Если он имеет маркировку SFX или SFX12V, вы можете установить любой текущий блок питания SFX12V или, если в корпусе достаточно свободного пространства, блок ATX12V. Если старый блок питания имеет маркировку TFX12V, подойдет только другой блок TFX12V.Если на вашем старом блоке питания нет маркировки с указанием спецификации и соответствия версии, поищите на веб-сайте производителя номер модели вашего текущего блока питания. Если все остальное не помогает, измерьте свой текущий блок питания и сравните его размеры с размерами блоков, которые вы собираетесь купить.

    Вот еще несколько важных характеристик блоков питания:

    Номинальная мощность, которую может выдать блок питания. Номинальная мощность — это составная цифра, определяемая путем умножения значений силы тока, доступной для каждого из нескольких напряжений, подаваемых блоком питания ПК.Номинальная мощность в основном полезна для общего сравнения источников питания. Что действительно имеет значение, так это индивидуальная сила тока, доступная при разных напряжениях, которые значительно различаются между номинально аналогичными источниками питания.

    ТЕМПЕРАТУРА

    Номинальные значения мощности не имеют смысла, если они не указывают температуру, при которой проводился расчет. С повышением температуры выходная мощность источника питания уменьшается. Например, мощность ПК и охлаждение составляет 40 ° C, что является реальной температурой для рабочего источника питания.Большинство блоков питания рассчитаны всего на 25 C. Эта разница может показаться незначительной, но блок питания, рассчитанный на 450 Вт при 25 C, может выдавать только 300 Вт при 40 C. Регулировка напряжения также может пострадать при повышении температуры, что означает, что блок питания, который номинально соответствует спецификациям регулирования напряжения при 25 ° C, может выходить за рамки технических требований при нормальной работе при 40 ° C или около того.

    Отношение выходной мощности к входной, выраженное в процентах. Например, блок питания, который выдает 350 Вт на выходе, но требует 500 Вт на входе, имеет КПД 70%.Как правило, хороший источник питания имеет КПД от 70% до 80%, хотя КПД зависит от того, насколько сильно он загружен. Расчет эффективности затруднен, поскольку блоки питания ПК представляют собой импульсные блоки питания , а не линейные блоки питания . Самый простой способ подумать об этом — представить себе импульсный источник питания, потребляющий большой ток в течение части времени, в течение которого он работает, и не ток в остальное время. Процент времени, в течение которого он потребляет ток, называется коэффициентом мощности , который обычно составляет 70% для стандартного блока питания ПК.Другими словами, блок питания ПК мощностью 350 Вт фактически требует входной мощности 500 Вт в 70% случаев и 0 Вт в 30% случаев.

    Сочетание коэффициента мощности с эффективностью дает некоторые интересные цифры. Блок питания выдает 350 Вт, но коэффициент мощности 70% означает, что ему требуется 500 Вт в 70% случаев. Однако эффективность 70% означает, что вместо того, чтобы фактически потреблять 500 Вт, он должен потреблять больше в соотношении 500 Вт / 0,7 или около 714 Вт. Если вы посмотрите на табличку с техническими характеристиками блока питания на 350 Вт, вы можете обнаружить, что это соответствует номинальной мощности 350 Вт, что составляет 350 Вт / 110 В или около 3.18 ампер, он должен фактически потреблять до 714 Вт / 110 В или около 6,5 ампер. Другие факторы могут увеличить эту фактическую максимальную силу тока, поэтому часто встречаются блоки питания мощностью 300 или 350 Вт, которые на самом деле потребляют максимум 8 или 10 ампер. Это отклонение имеет значение для планирования как для электрических цепей, так и для ИБП, размеры которых должны соответствовать фактическому потреблению тока, а не номинальной выходной мощности.

    Высокая эффективность желательна по двум причинам. Во-первых, это снижает ваш счет за электричество.Например, если ваша система фактически потребляет 200 Вт, блок питания с эффективностью 67% потребляет 300 Вт (200 / 0,67), чтобы обеспечить эти 200 Вт, тратя впустую 33% электроэнергии, за которую вы платите. Блок питания с эффективностью 80% потребляет всего 250 Вт (200 / 0,80), чтобы обеспечить те же 200 Вт для вашей системы. Во-вторых, потраченная впустую энергия преобразуется в тепло внутри вашей системы. Благодаря источнику питания с КПД 67% ваша система должна избавиться от 100 Вт избыточного тепла по сравнению с половиной от этого показателя при использовании источника питания с КПД 80%.

    Коэффициент мощности

    Коэффициент мощности определяется делением истинной мощности (Вт) на полную мощность (Вольт x Ампер или ВА).Стандартные блоки питания имеют коэффициент мощности в диапазоне от 0,70 до 0,80, а лучшие блоки приближаются к 0,99. В некоторых новых источниках питания используется пассивная или активная коррекция коэффициента мощности (PFC) , которая может увеличить коэффициент мощности до диапазона от 0,95 до 0,99, уменьшая пиковый ток и ток гармоник. В отличие от стандартных источников питания, которые попеременно потребляют большой ток и его отсутствие, источники питания с коррекцией коэффициента мощности постоянно потребляют умеренный ток. Поскольку электрическая проводка, автоматические выключатели, трансформаторы и ИБП должны быть рассчитаны на максимальное потребление тока, а не на среднее потребление тока, использование источника питания PFC снижает нагрузку на электрическую систему, к которой подключается источник питания PFC.

    Одно из главных различий между источниками питания премиум-класса и менее дорогими моделями заключается в том, насколько хорошо они регулируются. В идеале, источник питания принимает питание переменного тока, которое может быть шумным или выходящим за рамки технических характеристик, и превращает эту мощность переменного тока в плавную, стабильную мощность постоянного тока без артефактов. На самом деле, ни один блок питания не соответствует идеалу, но хорошие блоки питания намного ближе, чем дешевые. Процессоры, память и другие компоненты системы рассчитаны на работу с чистым стабильным напряжением постоянного тока.Любое отклонение от этого может снизить стабильность системы и сократить срок службы компонентов. Вот ключевые вопросы регулирования:

    Идеальный источник питания принимает входной синусоидальный сигнал переменного тока и обеспечивает полностью плоский выход постоянного тока. Реальные источники питания фактически обеспечивают выход постоянного тока с наложенной на него небольшой составляющей переменного тока. Эта составляющая переменного тока называется пульсацией и может быть выражена как размах напряжения (p-p) в милливольтах (мВ) или в процентах от номинального выходного напряжения.У высококачественного источника питания пульсации могут составлять 1%, что может быть выражено как 1%, или как фактическое изменение напряжения p-p для каждого выходного напряжения. Например, при +12 В пульсации 1% соответствуют + 0,12 В, обычно выражаемым как 120 мВ. Источник питания среднего уровня может ограничивать пульсации до 1% на некоторых выходных напряжениях, но подниматься до 2% или 3% на других. У дешевых источников питания пульсация может составлять 10% и более, что делает запуск ПК бесполезным.

    Нагрузка на блок питания ПК может значительно меняться во время рутинных операций; например, когда включается лазер записывающего устройства DVD или оптический привод раскручивается и замедляется. Регулировка нагрузки выражает способность источника питания обеспечивать номинальную выходную мощность при каждом напряжении, когда нагрузка изменяется от максимального до минимального, что выражается как изменение напряжения во время изменения нагрузки, либо в процентах, либо в размах разностей напряжений. Источник питания с жесткой регулировкой нагрузки обеспечивает почти номинальное напряжение на всех выходах независимо от нагрузки (конечно, в пределах своего диапазона). Первоклассный источник питания регулирует напряжения на шинах критического напряжения +3.3 В, + 5 В и + 12 В с точностью до 1%, с регулировкой 5% на менее важных шинах 5 В и 12 В. Отличный источник питания может регулировать напряжение на всех критических шинах с точностью до 3%. Источник питания среднего уровня может регулировать напряжение на всех критических шинах с точностью до 5%. Дешевые блоки питания могут отличаться на 10% и более на любой рейке, что недопустимо.

    Идеальный источник питания должен обеспечивать номинальное выходное напряжение при подаче любого входного переменного напряжения в пределах своего диапазона. В реальных источниках питания выходное напряжение постоянного тока может незначительно изменяться при изменении входного переменного напряжения.Так же, как регулирование нагрузки описывает эффект внутренней нагрузки, линейное регулирование можно рассматривать как описывающее эффекты внешней нагрузки; например, внезапный провал подаваемого сетевого напряжения переменного тока при включении двигателя лифта. Регулировка линии измеряется путем удержания всех других переменных постоянными и измерения выходных напряжений постоянного тока, когда входное напряжение переменного тока изменяется в пределах входного диапазона. Источник питания с жесткой регулировкой линии обеспечивает выходное напряжение в пределах спецификации, так как входное напряжение изменяется от максимального до минимально допустимого.Линейное регулирование выражается так же, как регулирование нагрузки, и допустимые проценты такие же.

    Вентилятор блока питания является одним из основных источников шума в большинстве ПК. Если ваша цель — снизить уровень шума вашей системы, важно выбрать подходящий источник питания. Блоки питания с пониженным уровнем шума Модели , такие как Antec TruePower 2.0 и SmartPower 2.0, Enermax NoiseTaker, Nexus NX, PC Power & Cooling Silencer, Seasonic SS и Zalman ZM, предназначены для минимизации шума вентилятора и могут быть основой системы, которая почти не слышна в тихой комнате. Бесшумные блоки питания , такие как Antec Phantom 350 и Silverstone ST30NF, вообще не имеют вентиляторов и почти полностью бесшумны (электрические компоненты могут немного гудеть). На практике безвентиляторный источник питания редко дает много преимуществ. Они довольно дороги по сравнению с источниками питания с пониженным уровнем шума, а блоки с пониженным уровнем шума достаточно тихие, поэтому любой шум, который они производят, компенсируется шумом от вентиляторов корпуса, кулера ЦП, шума вращения жесткого диска и т. Д.

    Полет с рельсов

    Регулирование нагрузки на шину +12 В стало гораздо более важным, когда Intel поставила Pentium 4. В прошлом +12 В использовалось в основном для работы приводных двигателей. С Pentium 4 Intel начала использовать 12V VRM для обеспечения более высоких токов, которые требуются процессорам Pentium 4. Последние процессоры AMD также используют 12 В VRM для питания процессора. Блоки питания, совместимые с ATX12V, разработаны с учетом этого требования. Старые и / или недорогие блоки питания ATX, хотя они могут быть рассчитаны на достаточную силу тока на шине +12 В для поддержки современного процессора, могут не иметь соответствующих норм, чтобы делать это должным образом.

    За последние несколько лет в источниках питания произошли некоторые существенные изменения, все из которых прямо или косвенно явились результатом повышенного энергопотребления и изменений напряжений, используемых современными процессорами и другими компонентами системы. При замене блока питания в старой системе важно понимать различия между старым блоком питания и существующими блоками, поэтому давайте кратко рассмотрим эволюцию блоков питания семейства ATX на протяжении многих лет.

    В течение 25 лет каждый блок питания ПК снабжен стандартными разъемами питания Molex (жесткий диск) и Berg (дисковод для гибких дисков), которые используются для питания приводов и аналогичных периферийных устройств. Источники питания различаются типами разъемов, которые они используют для питания самой материнской платы. Исходная спецификация ATX определяла 20-контактный основной разъем питания ATX , показанный на рис. 16-2 . Этот разъем использовался всеми блоками питания ATX и ранними блоками питания ATX12V.

    Рисунок 16-2: 20-контактный основной разъем питания ATX / ATX12V

    20-контактный основной разъем питания ATX был разработан в то время, когда процессоры и память использовали + 3,3 В и + 5 В, поэтому для этого разъема определены многочисленные линии + 3,3 В и + 5 В. Контакты в корпусе разъема рассчитаны на ток не более 6 ампер. Это означает, что три линии + 3,3 В могут нести 59,4 Вт (3,3 В x 6 А x 3 линии), четыре линии + 5 В могут передавать 120 Вт, а одна линия + 12 В может нести 72 Вт, что в сумме составляет около 250 Вт.

    Этой установки было достаточно для ранних систем ATX, но поскольку процессоры и память стали более энергоемкими, разработчики систем вскоре поняли, что 20-контактный разъем обеспечивает недостаточный ток для новых систем. Их первая модификация заключалась в добавлении вспомогательного силового разъема ATX , показанного на рис. 16-3 . Этот разъем, определенный в спецификациях ATX 2.02 и 2.03 и в ATX12V 1.X, но исключенный из более поздних версий спецификации ATX12V, использует контакты, рассчитанные на 5 ампер.Таким образом, его две линии + 3,3 В добавляют 33 Вт к пропускной способности + 3,3 В, а одна линия + 5 В добавляет 25 Вт к пропускной способности + 5 В, что в целом добавляет 58 Вт.

    Рисунок 16-3: 6-контактный разъем вспомогательного питания ATX / ATX12V

    Intel отказалась от вспомогательного разъема питания из более поздних версий спецификации ATX12V, поскольку он был излишним для процессоров Pentium 4. Pentium 4 использовал питание +12 В, а не + 3,3 В и + 5 В, которые использовались более ранними процессорами и другими компонентами, поэтому больше не было необходимости в дополнительных +3.3В и + 5В. Большинство производителей блоков питания прекратили предоставление разъема вспомогательного питания вскоре после поставки Pentium 4 в начале 2000 года. Если вашей материнской плате требуется разъем вспомогательного питания, это является достаточным доказательством того, что эта система слишком старая, чтобы ее можно было экономически модернизировать.

    Хотя подключенное вспомогательное питание обеспечивало дополнительный ток + 3,3 В и + 5 В, оно никак не увеличивало ток +12 В, доступный для материнской платы, и это оказалось критически важным. Материнские платы используют VRM (модули регулятора напряжения) для преобразования относительно высоких напряжений, подаваемых источником питания, в низкие напряжения, необходимые процессору.Более ранние материнские платы использовали VRM + 3,3 В или + 5 В, но повышенное энергопотребление Pentium 4 вынудило перейти на VRM + 12 В. Это создало серьезную проблему. Основной 20-контактный разъем питания может обеспечить мощность не более 72 Вт при напряжении +12 В, что намного меньше, чем требуется для питания процессора Pentium 4. Дополнительный разъем питания не добавил +12 В, поэтому потребовался еще один дополнительный разъем.

    Intel обновила спецификацию ATX, включив новый 4-контактный разъем 12 В, названный + 12 В разъем питания (или, случайно, разъем P4 , хотя последние процессоры AMD также используют этот разъем).В то же время они переименовали спецификацию ATX в спецификацию ATX12V, чтобы отразить добавление разъема +12 В. Разъем + 12В, показанный на Рис. 16-4 , имеет два контакта + 12В, каждый рассчитан на ток 8 ампер, что в сумме дает 192 Вт мощности +12 В и два контакта заземления. Блок питания ATX12V с мощностью 72 Вт от +12 В, обеспечиваемой 20-контактным основным разъемом питания, может обеспечить до 264 Вт от +12 В, что более чем достаточно даже для самых быстрых процессоров.

    Рисунок 16-4: 4-контактный разъем питания +12 В

    Разъем питания +12 В предназначен для подачи питания на процессор и подключается к разъему на материнской плате рядом с разъемом процессора, чтобы минимизировать потери мощности между разъемом питания и процессором.Поскольку теперь процессор питался от разъема +12 В, Intel удалила вспомогательный разъем питания, когда выпустила спецификацию ATX12V 2.0 в 2000 году. С того времени все новые блоки питания поставлялись с разъемом +12 В, а некоторые по сей день продолжают для подключения вспомогательного силового разъема.

    Эти изменения с течением времени означают, что блок питания в более старой системе может иметь одну из следующих четырех конфигураций (от самой старой до новейшей):

    • 20-контактный только основной разъем питания
    • 20-контактный основной разъем питания и 6-контактный вспомогательный разъем питания
    • 20-контактный разъем основного питания, 6-контактный вспомогательный разъем питания и 4-контактный разъем + 12В
    • 20 -контактный основной разъем питания и 4-контактный разъем +12 В

    Если материнская плата не требует 6-контактного вспомогательного разъема, вы можете использовать любой текущий блок питания ATX12V для замены любой из этих конфигураций.

    Это подводит нас к нынешней спецификации ATX12V 2.X, которая внесла больше изменений в стандартные разъемы питания. Введение видеостандарта PCI Express в 2004 году снова подняло старую проблему: ток +12 В, доступный на 20-контактном основном разъеме питания, ограничен до 6 ампер (или 72 Вт в сумме). Разъем +12 В может обеспечить достаточный ток +12 В, но он предназначен для процессора. Быстрая видеокарта PCI Express может легко потреблять более 72 Вт тока +12 В, поэтому нужно что-то делать.

    Intel могла бы представить еще один дополнительный разъем питания, но вместо этого она решила на этот раз укусить пулю и заменить устаревший 20-контактный основной разъем питания новым основным разъемом питания, который может подавать на материнскую плату больше тока +12 В. Результатом стал новый 24-контактный разъем основного питания ATX12V 2.0 , показанный на рис. 16-5 .

    Рисунок 16-5: 24-контактный основной разъем питания ATX12V 2.0

    24-контактный основной разъем питания добавляет четыре провода к 20-контактному основному разъему питания, один провод заземления (COM) и один дополнительный провод для +3.3В, + 5В и + 12В. Как и в случае 20-контактного разъема, контакты внутри корпуса 24-контактного разъема рассчитаны на ток не более 6 ампер. Это означает, что четыре линии + 3,3 В могут нести 79,2 Вт (3,3 В x 6 А x 4 линии), пять линий + 5 В могут нести 150 Вт, а две линии + 12 В могут нести 144 Вт, что в сумме составляет около 373 Вт. Благодаря 192 Вт напряжения +12 В, обеспечиваемому разъемом питания + 12 В, современный блок питания ATX12V 2.0 может обеспечить в общей сложности около 565 Вт.

    Казалось бы, 565 Вт хватит для любой системы.Увы, неправда. Проблема, как обычно, в том, какие напряжения и где доступны. 24-контактный основной разъем питания ATX12V 2.0 выделяет одну из своих линий +12 В для видеосигнала PCI Express, что на момент выпуска спецификации считалось достаточным. Но самые быстрые современные видеокарты PCI Express могут потреблять намного больше, чем может обеспечить выделенная линия +12 В 72 Вт. Например, у нас есть видеоадаптер NVIDIA 6800 Ultra с пиковым потреблением +12 В, равным 110 Вт.

    Очевидно, были необходимы какие-то средства обеспечения дополнительной энергии.Некоторые сильноточные видеокарты AGP решают эту проблему, включая разъем жесткого диска Molex, к которому можно подключить стандартный кабель питания для периферийных устройств. Видеокарты PCI Express используют более элегантное решение. 6-контактный разъем питания PCI Express для графики , показанный на рис. 16-6 , был разработан PCISIG (http://www.pcisig.org), организацией, ответственной за поддержку стандарта PCI Express, специально для обеспечения дополнительных Ток +12 В, необходимый для быстрых видеокарт PC Express.Хотя он еще не является официальной частью спецификации ATX12V, этот разъем хорошо стандартизирован и присутствует в большинстве современных источников питания. Мы ожидаем, что он будет включен в следующее обновление спецификации ATX12V.

    Рисунок 16-6: 6-контактный разъем питания графического адаптера PCI Express

    В разъеме питания графической подсистемы PCI Express используется штекер, аналогичный разъему питания +12 В, с контактами, также рассчитанными на ток 8 А. С тремя линиями +12 В при 8 А каждая, разъем питания графического адаптера PCI Express может обеспечить до 288 Вт (12 x 8 x 3) тока +12 В, которого должно хватить даже для самых быстрых графических карт будущего.Поскольку некоторые материнские платы PCI Express могут поддерживать двойные видеокарты PCI Express, некоторые блоки питания теперь включают два разъема питания для графической карты PCI Express, что увеличивает общую мощность +12 В, доступную для видеокарт, до 576 Вт. В дополнение к 565 Вт, доступным на 24-контактном основном разъеме питания и разъеме + 12 В, это означает, что можно построить источник питания ATX12V 2.0 с общей мощностью 1141 Вт. (Самый большой из известных нам — это блок мощностью 1000 Вт, доступный от PC Power & Cooling.)

    Со всеми изменениями, произошедшими с годами, разъемы питания устройств остались без внимания.Источники питания, выпущенные в 2000 году, включали те же разъемы питания Molex (жесткий диск) и Berg (дисковод для гибких дисков), что и блоки питания 1981 года. Ситуация изменилась с появлением Serial ATA, в котором используется другой разъем питания. 15-контактный разъем питания SATA , показанный на Рис. 16-7 , включает шесть контактов заземления и по три контакта для + 3,3 В, + 5 В и + 12 В. В этом случае большое количество выводов, находящихся под напряжением, не предназначено для поддержки более высокого тока, жесткий диск SATA потребляет небольшой ток, и каждый диск имеет свой собственный разъем питания, но для поддержки операций включения до отключения и отключения до включения. соединения, необходимые для горячего подключения или подключения / отключения привода без отключения питания.

    Рисунок 16-7: Разъем питания Serial ATA ATX12V 2.0

    Несмотря на все эти изменения на протяжении многих лет, спецификация ATX пошла на многое, чтобы гарантировать обратную совместимость новых блоков питания со старыми материнскими платами. Это означает, что, за очень немногими исключениями, вы можете подключить новый блок питания к старой материнской плате или наоборот.

    ОСТЕРЕГАЙТЕСЬ СТАРЫХ СИСТЕМ DELL

    В течение нескольких лет в конце 1990-х годов Dell использовала стандартные разъемы на своих материнских платах и ​​блоках питания, но с нестандартными контактами.Подключение стандартного блока питания ATX к одной из этих нестандартных материнских плат Dell (или наоборот) может привести к повреждению материнской платы и / или блока питания. К счастью, эти системы настолько устарели, что их уже нельзя модернизировать с экономической точки зрения. Тем не менее, если вы обнаружите, что заменяете блок питания или материнскую плату в более старой системе Dell, будьте абсолютно уверены, что это не одно из нестандартных устройств Dell. Для этого проверьте номер модели системы на веб-сайте PC Power & Cooling (http: // www.pcpowerandcooling.com). PC Power & Cooling продает запасные блоки питания для этих нестандартных систем Dell, но, учитывая, что самая молодая такая система сейчас довольно старая, можно только догадываться, как долго PC Power & Cooling будет продолжать продавать эти нестандартные блоки питания.

    Даже замена основного разъема питания с 20 на 24 контакта не представляет проблемы, потому что новый разъем сохраняет те же соединения контактов и шпонку для контактов с 1 по 20, а просто добавляет контакты с 21 по 24 на конец более старого 20-контактного разъема. расположение контактов.Как показано на рис. 16-8 , старый 20-контактный разъем питания идеально подходит для 24-контактного разъема основного питания. Фактически, разъем главного разъема питания на всех 24-контактных материнских платах, которые мы видели, разработан специально для подключения 20-контактного кабеля. Обратите внимание на выступ во всю длину на разъеме материнской платы на рис. 16-8 , рис. 16-8, который предназначен для фиксации 20-контактного кабеля на месте.

    Рисунок 16-8: 20-контактный основной разъем питания ATX, подключенный к 24-контактной материнской плате

    Конечно, 20-контактный кабель не включает в себя лишних +3.Провода 3 В, + 5 В и + 12 В, имеющиеся на 24-контактном кабеле, могут вызвать потенциальную проблему. Если материнской плате для работы требуется дополнительный ток, доступный на 24-контактном кабеле, она не сможет работать с 20-проводным кабелем. В качестве обходного пути большинство 24-контактных материнских плат имеют стандартный разъем Molex (жесткий диск) где-то на материнской плате. Если вы используете эту материнскую плату с 20-жильным кабелем питания, вы также должны подключить кабель Molex от источника питания к материнской плате. Этот кабель Molex обеспечивает дополнительные + 5 В и + 12 В (но не +3.3 В), необходимое материнской плате для работы. (Большинство материнских плат не имеют требований к напряжению + 3,3 В выше, чем может удовлетворить 20-проводной кабель; те, которые имеют, могут использовать дополнительный VRM для преобразования некоторых дополнительных + 12 В, подаваемых через разъем Molex, в + 3,3 В.)

    Поскольку 24-контактный основной разъем питания ATX является расширенным набором 20-контактной версии, также можно использовать 24-контактный блок питания с 20-контактной материнской платой. Для этого вставьте 24-контактный кабель в 20-контактный разъем так, чтобы четыре неиспользуемых контакта свисали с края.Кабель и гнездо материнской платы имеют ключ для предотвращения неправильной установки кабеля. Одна из возможных проблем проиллюстрирована на рис. 16-9 . На некоторых материнских платах конденсаторы, разъемы или другие компоненты устанавливаются так близко к разъему основного питания ATX, что недостаточно свободного места для дополнительных четырех контактов 24-контактного кабеля питания. На рис. 16-9 , например, эти дополнительные контакты вторгаются во вторичный разъем ATA.

    Рисунок 16-9: 24-контактный основной разъем питания ATX, подключенный к 20-контактной материнской плате

    К счастью, есть простой способ решения этой проблемы.Различные компании производят переходные кабели с 24 на 20 контактов, подобные показанному на Рис. 16-10 . 24-контактный кабель от источника питания подключается к одному концу кабеля (левый конец на этом рисунке), а другой конец представляет собой стандартный 20-контактный разъем, который подключается непосредственно к 20-контактному разъему на материнской плате. Многие качественные блоки питания включают в себя такой переходник в комплекте. Если у вас его нет и вам нужен адаптер, вы можете приобрести его у большинства поставщиков компьютерных запчастей в Интернете или в местном компьютерном магазине с хорошим ассортиментом.

    Рисунок 16-10: Кабель-адаптер для использования 24-контактного основного разъема питания ATX с 20-контактной материнской платой

    Блоки питания и защита компьютеров

    Почему лучший источник питания означает лучший опыт работы на компьютере?

    Итак, как лучший блок питания соотносится с лучшими вычислительными возможностями? Подумайте вот о чем: если ваш блок питания плохо справляется с регулированием напряжения и фильтрацией пульсаций, что именно?

    Блок питания компьютера по существу преобразует переменный ток в постоянный.Старые или более простые компьютерные блоки питания преобразуют переменный ток в несколько напряжений постоянного тока (+12 В, + 5 В, + 3,3 В) одновременно. Новые, более совершенные блоки питания преобразуют переменный ток в +12 В постоянного тока, в то время как меньшие блоки питания постоянного тока в корпусе блока питания преобразуют +12 В в менее используемые + 3,3 В и + 5 В. Последний более эффективен, потому что менее используемые напряжения не преобразуются, если они не требуются, а преобразование постоянного тока в постоянное само по себе более эффективно, чем преобразование переменного тока в постоянный, поскольку для этого требуется меньше и меньше компонентов.

    После преобразования напряжения оно фильтруется с помощью катушек индуктивности и конденсаторов.

    На вторичной стороне этого HX1050 мы видим очень большую катушку индуктивности и несколько конденсаторов разного размера.

    Итак, теперь у нас есть две важные вещи, на которые следует обратить внимание, глядя на выход этого источника питания: насколько хорошо регулируется выходное напряжение и имеет ли эта выходная мощность минимальные пульсации?

    Я просто использовал два слова, которые вы часто слышите, когда говорят о компьютерных блоках питания: регулирование и пульсация.

    Компьютерные блоки питания используют «переключающую» технологию для преобразования переменного тока в постоянный. И пока выпрямитель включается и выключается, он вырабатывает постоянный ток, который пульсирует в ритме с любой частотой переменного тока на входе (например, 60 Гц — это ваша типичная частота переменного тока в Северной Америке), независимо от частоты, на которой переключается выпрямитель. Это называется шумом. Сначала напряжение проходит через катушку индуктивности или дроссель. Это сглаживает форму волны и снижает частоту шума. Тогда у вас есть конденсаторы.Конденсаторы накапливают электрические заряды и могут выводить электрический заряд без шума. Если напряжение, поступающее на конденсатор, повышается или понижается с частотой переключения, заряд конденсатора повышается или понижается. Это изменение заряда конденсатора происходит намного медленнее, чем частота коммутируемой мощности, которая заряжает конденсатор. Хотя это то, как он фильтрует шум, это также создает пульсации (небольшие пики и спады в выходном напряжении постоянного тока). В этом случае могут помочь более крупные конденсаторы или конденсаторы, соединенные последовательно, потому что чем медленнее изменяется между самым низким и самым высоким напряжениями, тем более стабильно снижается выходное напряжение и пульсации.Но инженерам, разрабатывающим эти блоки питания, следует соблюдать осторожность. Если вы используете слишком много конденсаторов, слишком большой конденсатор или даже слишком большой индуктор, вы снижаете эффективность вашего источника питания. Каждая часть цепи, через которую проходит питание, имеет некоторую потерю мощности, и конденсаторы рассеивают этот отфильтрованный шум в виде тепла, и это тепло теряется в мощности!

    Это снимок экрана осциллографа, измеряющего пульсации в источнике питания, который плохо справляется с фильтрацией.

    Когда блок питания лучше справляется с фильтрацией пульсаций, на осциллографе это будет выглядеть так.

    Регулирование — это то, насколько хорошо источник питания реагирует на изменения нагрузки. Допустим, блок питания выдает +12 В постоянного тока с нагрузкой 2 А. Допустим, нагрузка увеличивается до 5А, 10А .. или даже 15А. Так же, как я объяснил в отношении регуляторов напряжения процессора, в игру вступает закон Ома. По мере увеличения тока сопротивление увеличивается. По мере увеличения сопротивления напряжение падает.Качественный источник питания должен компенсировать это. Обычно мониторинг осуществляется внутри «управляющей ИС». ИС супервизора может сообщить контроллеру ШИМ (широтно-импульсной модуляции), что выпрямитель должен переключаться на другой частоте для соответствующей регулировки выходного напряжения. Иногда «сенсорный провод» определяет падение напряжения на нагрузке и передает его обратно на ИС. Это дает IC некоторую фору в том, чтобы сообщить контроллеру PWM о необходимости компенсации. «Цифровые блоки питания», такие как блоки питания Corsair серии AXi, используют цифровой сигнальный процессор для контроля напряжений и прямого указания выпрямителю переключаться на разных частотах.Поскольку контроль и управление полностью цифровое, компенсация выполняется намного быстрее (подробнее о том, как работают цифровые блоки питания, можно найти здесь).

    Итак, как лучший блок питания соотносится с лучшими вычислительными возможностями? Подумайте вот о чем: если ваш блок питания плохо справляется с регулированием напряжения и фильтрацией пульсаций, что именно?

    Хотя компьютерные блоки питания выдают несколько напряжений постоянного тока (+12 В, + 3,3 В и + 5 В), это не все напряжения, необходимые компьютеру для работы.

    Возьмем, к примеру, ЦП.ЦПУ использовали для работы с напряжением, полученным непосредственно от источника питания. Изначально + 5VDC. Со временем это напряжение было снижено до +3,3 В постоянного тока. Стремясь сделать процессоры более энергоэффективными, напряжение продолжало падать, и регуляторы напряжения на материнской плате должны были брать от источника питания + 3,3 В постоянного тока или +5 В постоянного тока и снижать эти напряжения до еще более низких напряжений. Естественно, можно было бы подумать, что преобразование одного напряжения в другое было бы более эффективным, если бы напряжения до и после были ближе друг к другу.Но по мере того, как процессоры становились быстрее, им требовалось больше энергии, но при более низких напряжениях. Сами процессоры были более эффективными, но не процесс преобразования этой мощности. Для большей мощности (ватт) при более низких напряжениях требуется больший ток. Более высокий ток без увеличения толщины провода и толщины следа увеличивает сопротивление. Затем сопротивление снижает напряжение и создает тепло, что является контрпродуктивным по той причине, по которой изначально были снижены напряжения ядра процессора! Решением стал стандарт ATX12V. К блоку питания был добавлен 4-контактный разъем питания, который обеспечивает питание +12 В постоянного тока, который затем был модернизирован до 8-контактного разъема питания, который мог подавать еще больший ток.С увеличением напряжения на VRM (модули стабилизации напряжения) ЦП требуется меньший ток для подачи питания на материнскую плату. Конечно, с этой большей дельтой напряжений (между +12 В постоянного тока и напряжением ядра процессора) требуется более надежное регулирование напряжения на материнской плате.

    В этой материнской плате используются радиаторы для пассивного охлаждения компонентов цепи стабилизации напряжения.

    С новым процессором Haswell от Intel мы начнем видеть регулирование напряжения на самом процессоре.Это снизит ток питания на выводах, которые перемещают питание от дорожек материнской платы к ядру ЦП, и, следовательно, уменьшит количество выводов, необходимое для передачи этого питания. Это также позволит ЦП динамически масштабировать напряжение ЦП более эффективно, чем когда-либо прежде. Стабилизаторы напряжения в Haswell, безусловно, не сутулиться, когда дело доходит до эффективного преобразования напряжений, но это все еще не полностью заменяет функцию материнской платы по преобразованию и фильтрации +12 В от источника питания в более низкое напряжение, поскольку у Haswell есть входное напряжение. из 2.4 В постоянного тока.

    То же самое и с вашими видеокартами. На самом деле графические процессоры — это просто небольшие процессоры. Черт возьми, в некоторых случаях, когда графические процессоры работают с тактовой частотой до 1 ГГц, они более мощные, чем некоторые процессоры! Разъемы питания PCIe, выходящие из блока питания, подают +12 В на видеокарту, где регуляторы напряжения понижают напряжение до необходимого для графического процессора.

    Два разъема питания PCIe подают напряжение +12 В на блок питания этой видеокарты, но графический процессор не использует +12 В. Сначала он должен преобразовать его в более низкое напряжение.

    В спецификации ATX говорится, что источник питания может выдавать напряжение со стабилизацией и колебаниями в пределах определенного допуска. Пульсация может достигать 1% и при этом оставаться в пределах спецификации. Это означает, что пульсация на +12 В может достигать ± 120 мВ. Регулировка напряжения может достигать ± 5%. Это означает, что напряжение +12 В постоянного тока может достигать + 12,6 В или всего + 11,4 В, и это по-прежнему находится в пределах спецификации ATX. Точно так же регулятор напряжения вашей материнской платы или видеокарты будет иметь аналогичный допуск по входному напряжению.Другими словами, если у вас есть VRM, который предназначен для преобразования +12 ВSC в + 2,4 В постоянного тока, этот VRM должен иметь возможность принимать напряжения до + 12,6 В постоянного тока или до + 11,4 В постоянного тока и при этом эффективно производить + 2,4 В постоянного тока. VRM имеет дополнительный допуск по скорости нарастания напряжения. Скорость нарастания напряжения — это, по сути, скорость, с которой напряжения меняются от одного к другому. Если напряжение упадет с +12 В постоянного тока до + 11,99 В постоянного тока в течение микросекунды, ваша скорость нарастания составит 10 мВ / мкс. Чтобы поддерживать эти допуски, ваша материнская плата, видеокарты и другие компоненты также имеют некоторые индуктивности и конденсаторы для фильтрации напряжений между источником питания и VRM.

    Итак, если все в пределах спецификации, нет проблем, не так ли?

    Ну не так уж и много. Видите ли, поскольку эти компоненты регулируют напряжение, и чем больше им приходится для этого работать, тем они нагреваются. Это тепло не только тратится впустую, но и сокращает срок службы компонентов. И хотя полевые МОП-транзисторы регулятора напряжения часто пассивно охлаждаются радиаторами (по крайней мере, они есть на материнских платах высокого класса), конденсаторы — нет. И если полевые МОП-транзисторы не охлаждаются пассивно или их меньше (что может быть VRM с «меньшим количеством фаз»), то им придется работать больше, чтобы регулировать напряжение, и они будут работать еще сильнее.Нагрев плохо влияет на компоненты компьютера, поэтому любой способ решения проблемы является плюсом. Еще одна проблема с правильным регулированием напряжения и фильтрацией заключается в том, что они занимают место на печатной плате. Как я уже сказал в отношении источника питания: если вы хотите, чтобы пульсации были меньше, вам нужно иметь конденсаторы большего размера или больше. То же самое и со схемами стабилизации напряжения на материнских платах и ​​видеокартах. То же самое и с полевыми МОП-транзисторами. У вас может быть больше фаз для более чистой энергии, но если полевые МОП-транзисторы не способны передавать больший ток, дополнительные фазы не принесут вам никакой пользы.Но полевые МОП-транзисторы большей мощности, большее количество фаз, больше и больше конденсаторов — все это требует места. У нас не всегда достаточно места на материнской плате или видеокарте, чтобы отказаться от почти идеального регулирования напряжения на плате.

    И еще есть эффекты пульсации при разгоне. Хотя ваши VRM могут хорошо регулировать напряжение, они не смогут избавиться от каждого бита пульсации, которая передается прямо на ваш процессор или графический процессор. Те из вас, кто занимается разгоном, знают, что вам обычно приходится увеличивать напряжение ядра процессора или графического процессора.Это связано с тем, что по мере того, как транзисторы в блоке обработки работают, регуляторы не могут включаться и выключаться с более высокой скоростью, необходимой для поддержания транзистора под напряжением при требуемом напряжении. Повышение напряжения фактически дает ЦП больше, чем ему нужно, но позволяет регуляторам давать ЦП то, что ему нужно, быстрее, чем когда это нужно. К несчастью, побочным продуктом этого является тепло (все снова начинает нагреваться, не так ли?). Если у вас есть какие-либо пульсации в этом напряжении Vcore, это помешает VRM подавать именно то напряжение, которое необходимо, когда транзисторы процессора работают с той тактовой частотой, на которой вы пытаетесь их эксплуатировать.Решение этой проблемы состоит в том, чтобы использовать процессор с еще более высоким напряжением Vcore, чем действительно необходимо. Обратной стороной этого является … подождите … более высокая температура процессора.

    Итак, подведем итог: лучший блок питания на самом деле продлит срок службы материнской платы и видеокарты, лучший разгон и даже более длительный срок службы вашего процессора и графического процессора. Это беспроигрышная ситуация!

    Что такое блок питания в компьютере

    Что такое блок питания в компьютере? Многие сталкиваются с различными компонентами компьютера, такими как материнская плата, процессор, графический процессор, мышь, монитор и многие другие.

    Самым второстепенным компонентом является блок питания или блок питания. Самая важная часть компьютера. Это похоже на сердце, которое качает кровь в теле животного или человека.

    Блок питания подает ток или питание на компьютер и его компоненты. Без блока питания пользователь вообще не сможет запустить компьютер. Без блока питания компьютер ничего не может сделать.

    Так как он электронный и требует электричества в компьютере. Поставляется от БП.Блок питания на компьютере имеет множество функций и типов.

    Есть питание AT или Advanced Technology. ATX или Advanced Technology Extended, EPX12V, CFX12V и многие другие. В ноутбуке есть батареи, потому что он портативный.

    Но также есть блок питания, который поставляется в небольшой переносной толстой пластиковой коробке. Что не намного мощнее компьютерного блока питания, используемого в настольных компьютерах.

    Блок питания состоит из множества компонентов, таких как вентилятор, множество разноцветных проводов и многое другое.Ремонт или модернизация блока питания не всегда возможны, и нужно помнить о совместимости материнской платы и блока питания.

    Он также помогает преобразовать ток, поступающий от распределительного щита, который является альтернативным током или переменным током, в постоянный или постоянный ток.

    Другие компоненты компьютера предпочитают постоянный ток; напряжение в блоке питания компьютера колеблется от 3, 5 и 12.

    Они не могут быть слишком низкими или слишком высокими, и если это произойдет, это вызовет множество проблем.По мере появления на рынке новых устройств, блоки питания также обновляются и становятся более продвинутыми, ATX имеет множество последних версий, используемых на многих компьютерах.

    Следовательно, блок питания является неотъемлемой частью компьютера.

    Что такое блок питания в компьютере?

    Компьютер состоит из большого количества оборудования. И блок питания или блок питания также является частью компьютера.

    Тоже фурнитура. По названию можно понять, что блок питания БП подает питание на другие части компьютера.

    Он помогает преобразовать мощность, вырабатываемую из розетки, в источник питания, который затем используется другими частями компьютера.

    Блок питания обычно располагается в задней части компьютера. Но в наши дни блок питания размещается в нижней части корпуса компьютера, прямо сзади.

    Розетка в стене включается в розетку, и затем переменный ток преобразуется в постоянный. Это непрерывный поток силы.

    Важно знать разницу между переменным током и постоянным током.Это потрясающая работа в области технологий.

    Которая всегда уступает место другим известным компонентам, таким как ЦП, материнская плата и другие.

    Если нет источника питания, компьютер не сможет запуститься.

    Блок питания бывает разных размеров, особенно он подходит для большинства корпусов компьютеров.

    Ширина и высота могут быть одинаковыми, но длина и длина зависят от производителя.

    Некоторыми популярными производителями блоков питания являются CORSAIR, Ultra и даже CoolMax.Они поставляются с компьютером при покупке или даже при настройке.

    Многие пользователи не видят, из чего обычно состоит компьютер, потому что он в основном находится сзади и в футляре. Он состоит из вентилятора, выводящего воздух из корпуса компьютера.

    Содержит три удлиненных порта (папа). Которая подключена к источнику питания. Один из них состоит из двух переключателей, переключателя питания или даже переключателя напряжения питания.

    Есть цветные провода, которыми они соединены с разными частями.Затем он подает питание. Например, есть провода, которые подключаются к вентиляторам, материнской плате, графическому процессору и многому другому.

    Одним из наиболее важных компонентов блока питания является вентилятор, и если он не работает, это вызывает множество проблем. Блок питания обычно не подлежит ремонту.

    Многие пользователи избегают открывать блок питания. Рейтинг блока питания БП указан в мощности. Чем мощнее компьютер, тем большую мощность блок питания обеспечивает другим частям компьютера.

    Оба персональных компьютера состоят из одинаковых компонентов блока питания. Но есть разница во внешнем виде. В настольном компьютере блок питания поставляется в металлическом корпусе для надлежащей защиты и становится очень тяжелым.

    Но в портативных компьютерах он поставляется в тонкой пластиковой коробке, которую нельзя прикрепить изнутри. Таким образом, они подключаются извне, чтобы ноутбук работал.

    Также блоки питания именуются в зависимости от того, какую мощность они могут отдавать. На блоке питания есть этикетка, на которой пользователи получают информацию о блоке питания.

    Например, сколько мощности может дать одна линия напряжения. Многие электронные рынки продают блоки питания, и у них разные цены на все типы блоков питания.

    Пользователь должен выбрать блок питания в соответствии с бюджетом и мощностью, которую он может обеспечить. Это также зависит от потребности в мощности, которую хотят другие компоненты компьютеров.

    Типы компьютерных блоков питания

    Выбор правильного блока питания очень важен. Потому что, если нет источника питания, компьютер вообще не будет работать.

    Традиционный блок питания или блок питания AT также известен как блок питания Advanced Technology. Это предшественник блока питания ATX. Это первый блок питания, используемый для компьютеров.

    Тогда возникла потребность в компьютерах. Блок питания AT обеспечивал мощность 250 Вт, что было меньше, чем у других. Следовательно, потребность в источниках питания Advanced Technology резко упала.

    ATX или Advanced Technology Extended.Это усовершенствованный тип блоков питания для компьютеров. ATX также имеет материнскую плату.

    Следовательно, для соответствия материнской плате ATX необходимо приобрести блок питания ATX. Он был разработан в 1995 году известным производителем Intel. Он превзошел традиционный блок питания.

    Прилагается блок питания ATX плюс шина дополнительного напряжения 3,3. Он даже обеспечивает функцию «мягкого отключения». Блок питания отключается программно. И это позволяет блок питания ATX.

    Наконец, блок питания ATX поставляется с 20-контактным разъемом, который является одинарным. И это главный разъем питания. Рейтинг блока питания ATX ниже 70%, а его эффективность довольно низкая.

    ATX12V стал очень популярным в наши дни. Он превзошел блок питания ATX. ATX12V имеет множество вариантов или версий. Эти версии отличаются друг от друга.

    ATX12V — это усовершенствованный блок питания. И это продукт чуть лучше форм-фактора ATX.Добавление нескольких улучшенных характеристик, таких как дополнительные 4-дюймовые разъемы.

    Также поставляется с разъемом на 12 В. Разъем 12 В обеспечивает питание исключительно профессора. Самая последняя версия — ATX12V версии 2.4, которая используется на многих компьютерах.

    Они состоят из 24-контактных разъемов того же размера, что и блок питания ATX. Можно использовать любую материнскую плату блока питания ATX с блоком питания ATX12V.

    Но материнская плата ATX допускает 20-контактные разъемы. Должно быть много места для использования 24-контактного разъема в качестве лучшей альтернативы.

    Остальные четыре контакта не используются. И здесь немаловажный фактор — пространство. Но блок питания ATX не может быть подключен к материнской плате ATX12V из-за количества контактов.

    12V довольно эффективен, и его эффективность превышает 80%, что лучше, чем у традиционных блоков питания AT и ATX.

    Другой блок питания включает в себя:

    • Блок питания EPS12V , который используется на материнской плате настольных компьютеров высокого класса.
    • Существует ряд блоков питания меньшего размера, таких как SFX12V , также известный как малый форм-фактор, CFX12V , также известный как компактный форм-фактор, LFX12V , также известный как низкопрофильный форм-фактор и, наконец, TFX12V , также известный как как тонкий форм-фактор. Они используются в небольших компьютерных корпусах.
    • ATX и ATX12V используются для настольных персональных компьютеров. Есть еще один тип компьютерного блока питания, который используется в персональных компьютерах. Он называется Внешний источник питания .Тот, который используется в игровых консолях и многих других. Это внешний источник питания, который обычно большого размера и подключается к кабелю питания.
    • Всегда есть резерв для вещей. Также имеется резервный источник питания, также известный как UPS или источник бесперебойного питания. Используется при отключении основного питания.

    Напряжение питания компьютера

    Блок питания или блоки питания используются для преобразования переменного или переменного тока, поступающего с выхода, в постоянный ток или постоянный ток, который ниже.Напряжения различаются, и это звучит очень просто для понимания.

    Напряжение питания составляет 3,3 В, 5 В и 12 В. Эти напряжения не обязательно должны быть точными. Но он может меняться только до определенного момента, ниже или выше.

    Но если дело пойдет до крайности, это может вызвать проблемы. Напряжение — это произведение ватт. В наши дни обычно используются следующие источники питания: —

    • Цифровые схемы требуют 3,5 вольт. Уровень допуска составляет ± 5%. Минимальное напряжение, которое он может обеспечить, составляет +3.135 В постоянного тока. При этом минимальное обеспечиваемое напряжение составляет + 3,465 В постоянного тока.
    • Для + 5 В постоянного тока или напряжения постоянного тока уровень допуска снова такой же, как ± 5%. Минимальное обеспечиваемое напряжение составляет +4,750 В постоянного тока, а максимальное предоставленное напряжение составляет +5,250 В постоянного тока.
    • + 5 VSB или резервное напряжение. Он также используется для цифровых схем. Уровень допуска составляет ± 5%. Минимальное и максимальное напряжения составляют + 4,750 В постоянного тока и + 5,250 В постоянного тока соответственно.
    • Напряжение с допуском составляет ± 10% и составляет –5 В постоянного тока.Таким образом, максимальное и минимальное напряжения, которые он обеспечивает, составляют — 4,500 В постоянного тока и — 5,500 В постоянного тока соответственно.
    • Постоянный ток 12 В используется для дисководов, а также для запуска двигателей и вентиляторов. 12VDC и -12VDC имеют разные уровни допуска, 12VDC может колебаться от +11.400 до +12.600 VDC, а последнее колеблется от -10.800 VDC до -13.200VDC. Уровень допуска составляет ± 5% и ± 10% соответственно.

    Функции источника питания

    • Без источника питания компьютер не будет работать.Таким образом, пользователь не сможет использовать компьютер.
    • Блок питания или блок питания обеспечивает другие части компьютера электрическим током.
    • Он помогает преобразовывать переменный ток (AC), идущий от выхода или распределительного щита, в постоянный ток (DC), который идет к другим частям компьютера.
    • Вентилятор, установленный в блоке питания, используется для отвода тепла, выделяемого компьютером.
    • ИБП или источник бесперебойного питания помогает в питании компьютера пользователя от «скачков» и «падений напряжения».

    Часто задаваемые вопросы:

    Где в компьютере находится блок питания?

    Ранее блок питания располагался вверху, сзади компьютера. Но теперь он расположен внизу корпуса компьютера, сзади.

    Как долго работает блок питания?

    Это зависит от того, насколько хорошо с ним обращаются. Обычно срок службы БП составляет 5-7 лет. И если с ним обращаться очень хорошо, он может прослужить дольше. Бренд и качество тоже зависят.

    Что вызывает сбой блока питания?

    Если вентилятор перестает работать, а также из-за перегрева.Кроме того, неправильное обращение с блоком питания приведет к его отказу. Здесь тоже зависит от качества и от того, насколько хорошо работает.

    Выводы

    Производство этого оборудования не прекращается из-за его важности в мире компьютеров. Нет питания, нет работы компьютера.

    Быть таким важным. За компьютером следует правильно ухаживать. А также не возиться с блоком питания. Его очень сложно ремонтировать, и возиться с ним очень опасно.

    Как подключить компьютерный блок питания к автомобильному усилителю

    Есть несколько способов подключить автомобильный усилитель в вашем доме. Тем не менее, компьютерные блоки питания легко найти, и они станут отличным вариантом — , если вы знаете, как это сделать.

    В моем подробном руководстве я покажу вам, как подключить компьютерный блок питания к автомобильному усилителю. Я также собрал несколько отличных диаграмм, советов и прочего, чтобы помочь вам наслаждаться музыкой с меньшими хлопотами и головной болью.

    Может ли компьютерный блок питания работать с автомобильным усилителем? Что нужно знать

    Да, можно использовать компьютерный блок питания ПК для питания автомобильного усилителя.

    Однако есть несколько вещей, которые вам нужно знать. Например, если у вас нет более мощной модели блока питания, вы не сможете управлять динамиками с той же мощностью, что и при установке в автомобиле.

    Вам нужно подключить дистанционный провод к автомобильному усилителю?

    Да, автомобильный усилитель не будет работать без сигнала +12 В на удаленной клемме провода. Внутренний источник питания усилителя управляется этим проводом и действует как регулятор отключения. Точно так же вы захотите включить или выключить источник питания, как я покажу, или используют удаленный провод в качестве выключателя, чтобы усилитель не потреблял энергию, когда он не используется.

    Компьютерные блоки питания также имеют особый провод управления, который необходимо подключить для включения питания, как я вам покажу.

    Ток блока питания компьютера (амперы) и ограничения мощности

    Примеры выходного тока (в амперах) для типичного блока питания 200 Вт и блока питания повышенной мощности 700 Вт. Выходной ток ограничивает мощность, которую вы можете получить от автомобильного усилителя.

    Компьютерные блоки питания доступны в широком диапазоне вариантов выходной мощности, очень распространены 1500-200 Вт, но можно найти и другие, мощностью 700 Вт или более (хотя они и стоят немного дороже).Это важно знать, потому что ограничение по току источника питания ограничивает мощность, которую может выдавать автомобильный усилитель.

    Это означает, что вам нужно знать, что для усилителей большей мощности вы не можете ожидать, что динамики будут работать с полной выходной мощностью, на которую они рассчитаны. Хорошая новость в том, что, в отличие от автомобилей, динамики, используемые в вашем доме, потребляют меньше энергии при той же громкости, потому что внутри автомобиля плохой звук и требуется больше энергии для хороших результатов.

    Как запитать автомобильный усилитель от компьютерного блока питания (схема и детали)

    Использовать блок питания ATX (настольный компьютер) для автомобильного усилителя несложно — на самом деле, вам нужно всего лишь несколько шагов:

    • Подключение питания: Обрежьте провода +12 В (желтый) и такое же количество проводов заземления (черных).Зачистите изоляцию, оставив от 3/8 до 1/2 дюйма оголенного провода. Плотно скрутите их или используйте обжимной соединитель (кольцевой контакт, плоский контактный зажим и т. Д.) И подключите его к клеммам питания и заземления усилителя, следя за тем, чтобы не оставлять торчащие блуждающие жилы проводов, вызывающие короткое замыкание.
    • Питание включено: Расходные материалы для ПК не включаются, даже если используется выключатель на корпусе. Материнская плата ПК использует управляющий сигнал для вывода «питание включено». Чтобы сделать то же самое, вам нужно будет найти, разрезать и перемыть этот сигнальный провод управления на провод заземления либо напрямую, либо с помощью переключателя включения / выключения, если вам нравится [См. Схему]
    • Провод дистанционного управления усилителя: Есть несколько отличных способов сделать это, и я расскажу о них ниже.

    После того, как вы подключили +12 В и провод заземления, заземлите провод «питание включено». Источник питания должен включиться, и ваш автомобильный усилитель должен включиться. Однако в некоторых случаях у вас могут возникнуть проблемы.

    ПРИМЕЧАНИЕ: Если вы используете большой ток, обязательно используйте все или почти все желтые провода +12 В для подключения к усилителю. Как и в случае с автомобильным усилителем, вам нужно достаточно проводов для подачи более высокого тока без потери напряжения из-за недостаточной проводки.

    Примечание о некоторых усилителях

    Большие автомобильные усилители очень высокой мощности могут иногда потреблять короткие всплески тока при первом подключении к источнику питания после отключения. Это потому, что они содержат большие конденсаторы, которые при первом подключении к источнику питания на мгновение потребляют огромное количество ампер.

    Когда это происходит, возможно, это может привести к срабатыванию режима самозащиты в вашем источнике питания. Если это произойдет, вы можете попробовать включить источник питания, а затем подождать, прежде чем включать удаленный провод.Вы также можете оставить питание включенным, когда удаленный провод отключен, чтобы конденсаторы усилителя не разрядились, когда усилитель выключен.

    Возможно, вам понадобится более надежный блок питания, если это произойдет, но это не проблема, с которой большинство людей должно столкнуться.

    Варианты и примеры удаленного провода

    «Удаленный» терминал автомобильного усилителя использует слаботочный вход +12 В для включения источника питания и связанных цепей. У вас есть несколько вариантов, которые вы можете использовать:

    1. Перемычка: При подключении питания и заземления на 12 В вы можете использовать небольшую перемычку между клеммой батареи + 12 В и удаленным устройством, чтобы она была включена в любое время, когда на усилитель подается питание.Подойдет провод 18AWG или меньше (провод большого сечения не нужен).
    2. Перемычка + переключатель: То же, что и №1, но для самостоятельного управления вы можете добавить простой встроенный переключатель на удаленном проводе. Это полезно, если в вашем блоке питания нет переключателя включения / выключения или вы предпочитаете оставить его включенным.
    3. Использование домашней стереосистемы — преобразователь RCA с дистанционным выводом: Если вы подключаете усилитель к выходам на динамики домашней стереосистемы, вы можете использовать преобразователь линейного уровня с удаленным проводным выходом.Это автоматически включит и выключит усилитель вместе с выходом стерео.

    Если вы используете тумблер на проводе дистанционного управления, вы можете оставить источник питания переменного / постоянного тока включенным. Когда провод дистанционного управления усилителя отключен (отсоединен), усилитель выключится и не потребляет энергию.

    Использование преобразователя линейного уровня с удаленным проводным выходом

    Пример преобразователя линейного уровня с удаленным проводным выходом. Их необходимо подключить к источнику питания 12 В и заземлению, чтобы внутренняя электроника работала.Когда входы уровня громкоговорителей обнаруживают сигнал, удаленный проводной выход выдает +12 В и включает ваш усилитель. Когда сигнал динамика пропадает, он автоматически выключается.

    Подключение ноутбука, планшета или смартфона к усилителю для аудио

    Что замечательно, так это то, что у вас есть много вариантов для подачи аудиосигнала на входы вашего усилителя. Фактически, практически любой аналоговый (нецифровой) разъем можно использовать практически с любого устройства. Смартфоны, планшеты и ноутбуки можно использовать как через разъем для наушников, так и через Bluetooth.

    Просто имейте в виду, что не все гнезда для наушников или аудиовыхода созданы одинаково — некоторые работают хорошо и имеют хороший звук и громкость, в то время как другие могут иметь низкую громкость и качество звука «мээ». Однако хорошая новость заключается в том, что в целом работают хорошо, и я использовал этот подход несколько раз без жалоб.

    Подключение смартфона или планшета через Bluetooth

    Вы также можете использовать недорогой Bluetooth-приемник примерно за 25 долларов из таких мест, как Amazon.Они предлагают прямой линейный выходной разъем или разъемы RCA, которые можно так же легко подключить к домашнему ресиверу и автомобильному усилителю.

    Убедитесь, что вы приобрели приличный бренд, так как модели обычных / безымянных брендов, как правило, имеют проблемы с качеством звука и могут создавать странные шумы, например, между музыкальными треками, воспроизводимыми на вашем телефоне.

    Что делать, если у меня ноутбук без разъема для наушников?

    Вы можете использовать дешевый переходник с USB на стерео 3,5 мм, чтобы получить разъем размером с наушники для подключения аудиосигнала к усилителю.Они действительно доступны по цене (в некоторых случаях менее 10 долларов!) И являются хорошим вариантом, если у вашего ноутбука сломан разъем для наушников или его нет в наличии.

    Если вы, как и многие люди, хотите наслаждаться музыкой, фильмами или другими вещами на своем ноутбуке, проблема, если у вас нет линейного выхода или разъема для наушников, или если он просто не работает. Отличный вариант — использовать аудиоадаптер USB, поскольку он имеет разъем 3,5 мм, который можно подключить к входам RCA вашего усилителя.

    Я нашел некоторые по цене менее 10 долларов, доступные как со старым разъемом USB-A, так и с новым разъемом USB-C.

    Как подключить автомобильный усилитель к домашней стереосистеме

    Вы также можете подключить автомобильный усилитель к домашней стереосистеме, если хотите. Для этого есть 3 способа:

    1. Домашняя стереосистема без выходных разъемов RCA + автомобильный усилитель с входами уровня громкоговорителей: Для домашних стереофонических усилителей и приемников довольно распространено отсутствие разъемов RCA для подключения. Если в вашем усилителе есть встроенные входы уровня громкоговорителей, их можно подключить либо к неиспользуемой паре терминалов громкоговорителей, либо рядом с используемыми терминалами громкоговорителей.
    2. Домашняя стереосистема без выходных разъемов RCA + автомобильный усилитель без входов для динамиков: В этом случае у вас не останется выбора, кроме как использовать преобразователь линейного уровня. Это автомобильные стереоадаптеры, которые вы подключаете к проводке или клеммам динамиков. Это снизит уровень сигнала до уровня, совместимого с RCA-входами усилителя.
    3. Домашняя стереосистема с полнодиапазонными выходными гнездами RCA + автомобильный усилитель: Это самый простой способ, но не все домашние стереосистемы имеют полнодиапазонные выходные гнезда RCA.У некоторых есть только выходные разъемы RCA для сабвуфера, которые предназначены только для басов. Полнодиапазонные выходные разъемы RCA могут быть подключены непосредственно к входам RCA автомобильного усилителя.

    Разъемы

    линейного уровня позволяют подключать автомобильный усилитель без входов для динамиков к любой домашней стереосистеме . Вы можете подключить их к неиспользуемым клеммам динамиков на ресивере или усилителе, а также параллельно с уже используемыми домашними динамиками.

    ПРИМЕЧАНИЕ. Важно покупать качественный, хорошо продуманный линейный адаптер, чтобы избежать шума, плохого качества звука и других проблем.Не выбирайте самую дешевую — вместо этого приобретите модель известного бренда, на которую вы можете положиться (например, примеры, которые вы видите выше). К счастью, в наши дни вы можете купить такой хороший за 15-20 долларов или меньше.

    Устранение гудения (шума) контура заземления

    Вы можете использовать изолятор контура заземления, чтобы прервать заземляющий провод в кабелях RCA, но по-прежнему передавать аудиосигнал. Поскольку заземление может передавать зашумленный сигнал, который усиливается, это часто устраняет шум контура заземления.

    Одна вещь, на которую вы можете не рассчитывать, — это шум. Шум контура заземления, который проявляется в виде очень раздражающего «гула» 60 Гц, в некоторой степени обычен для домашнего стереооборудования. К сожалению, несмотря на то, что автомобильные усилители предназначены для его устранения, это все же может произойти.

    Вы можете попробовать использовать провод небольшого калибра и подключить его между заземлением или металлическим корпусом автомобильного усилителя, кабелями RCA и источником питания.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *