Разное

Халявное электричество схема: Схема халявное электричество своими руками

Содержание

Схема халявное электричество своими руками

Бесплатная электрическая энергия в… вашей розетке

Сразу обмолвимся – ни о каком мошенничестве тут речи не идет, все вполне в рамках существующего закона. Да и «халявной» энергии вы сумеете получить чуть-чуть — максимум для питания маломощной радиоаппаратуры, ночника или подзарядки запасного аккумулятора. Этот эксперимент носит, скорее, познавательный характер, хотя, разумеется, может понадобиться и в работе.

Перед тем как осуществлять идею в жизнь, проведем маленькой эксперимент. Нам для этого понадобится «ноль» в вашей розетке и заземление. Имеется в виду натуральное заземление — провод, объединенный конкретно с землёй. Это может быть смеситель или система механизированного отопления.

Если у вас дома трубы водомерного узла или теплоснабжения пластиковые, то заземление нужно будет выполнить самому — вбить метровую трубу, уголок или соседский лом в землю под окном. Можно вырыть яму глубиной метр-полтора и «похоронить» в ней кусочек ненужного (разумеется, соседского) железа, заранее надежно прикрутив к нему провод, который и будет заземлением. Железяку после захоронения для верности можно полить обыкновенной водой как кактус, уменьшив сопротивление почвы. Сейчас поищите в собственной розетке нулевой провод с помощью указателя напряжения (индикатора) .

Уверены, что это ноль, а не фаза? Это немаловважно, по-другому вы рискуете попасть под небезопасное для жизни напряжение! Тогда продолжаем. Вооружаемся вольтметром переменного напряжения, ставим его на самый большой измерительный предел и измеряем напряжение между «нулем» в розетке и заземлением. Возможно, вольтметр покажет чуть-чуть (измерительный предел поэтапно уменьшаем). Это пока не имеет значения.

Ждем, опять измеряем, и так пару раз на протяжение суток. Вот, например, в 18:00 напряжение поднялось аж до 12 вольт, позднее снизилось до 6, по утру снова упало до 1 вольта, в обед 9 В. Скачет, но оно есть! Раз есть, то он может применяться. Если напряжение поднималось до 12 вольт (например), то попробуем запитать им лампу от карманного фонаря либо даже автомобильную. Горит? Горит, причем счетчик электрической энергии этот факт не фиксирует. Почему?

Токовая катушка электросчетчика включена в линию фазы, мы берем напряжение с нулевого провода. Тогда второй вопрос — откуда оно там взялось, если «ноль» заземлен как минимум на трансформаторной подстанции? Фокус в том, что длина нулевого провода от подстанции (или где он там заземлен электриками, может в домовом щите) до вашей розетки имеет длину десятки, нередко сотни метров.

Данный же провод применяется для питания целого стояка (как минимум) либо даже дома. Все пользуются электротоком, ток бежит, на нулевом проводе, естественно, имеющим собственное сопротивление, напряжение падает. И напряжение это тем больше, чем больше потребителей включают соседи (да и вы) и чем больше расстояние от заземленного участка до вашей розетки. Вы берете это напряжение и «запускаете» конкретно на землю через изготовленное собственными силами заземление.

Вот и весь фокус. Никакой кражи (ну… практически никакой). В любом случае законом ответственность за пользование такой схемы питания не предусматривается ввиду ее (схемы) нецелесообразности. Также, на природных потерях в проводах и кабелях (они переходят в тепло) электрические сети имеют убытки в миллион, миллиарды раз большие. Если даже электрики и узнают про ваши эксперименты, они лишь улыбнутся.

Какой ток можно «выжать» из подобного источника? Микроамперы? Миллиамперы? Зря иронизируете. Десятки, сотни миллиампер, даже амперы!

Как можно применять это напряжение, которое все время скачет? Пускай скачет. Самое простое устройство зарядки (простой параметрический стабилизатор на необходимое вам напряжение) может, например, заряжать аккумулятор ночника, мобильного телефона, радиоприемника. Приемник поет весь день, ночник светит, мобильник или планшетный компьютер всегда заряжен, подсветка для декора горки делает красивее интерьер. Если вам посчастливилось с «географией», то вы сумеете держать в исправном состоянии даже аккумулятор для автомобиля, применяемый, например, для аварийного освещения, питания сигнализации или прочих нужд.

Однако даже если вам не надо это напряжение, все равно эксперимент очень интересен, а основное, поучителен.

Внимание! Проделывая аналогичные опыты, будьте аккуратными и очень внимательными — в розетке «живёт» фазный провод, который находится под опасным для жизни напряжением!

3 способа получить электричество из земли собственными руками

Для чего добывать электричество из земли

Для того, дабы получить электричество, необходимо найти разница потенциалов и проводник. Объединив все в единый поток, можно гарантировать себе постоянный источник электрической энергии. Но ведь на самом деле приручить разница потенциалов сложно.

Природа проводит через жидкую среду электрическую энергию большой силы. Это разряды молнии, которые, как все знают, появляются в воздухе, насыщенном влагой. Однако это только единичные разряды, а не постоянный поток электрической энергии.

Человек на себя взял функцию природной мощи и устроил перемещение электрической энергии по проводам. Однако это только перевод одного вида энергии в другой. Извлечение электричества конкретно из среды остаётся в основном на уровне научных поисков, опытов из разряда занимательной физики и создания маленьких установок небольшой мощности.

Большого труда не составит извлекать электричество из твёрдой и мокрой среды.

Единство трёх сред

Наиболее востребованной средой в данном случае считается почва. А дело все в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду очень маленькими частичками минералов размещены капли воды и воздушные пузырьки. Кроме того, простая единица почвы – мицелла или глинисто-гумусовый комплекс собой представляет непростую систему, обладающую разницей потенциалов.

На внешней оболочке подобной системы сформировывается негативный заряд, на внутренней – позитивный. К отрицательно заряженной оболочке мицеллы притягиваются благоприятно заряженные ионы, находящиеся в обстановке. Так что в почве регулярно происходят электрические и электрохимические процессы. В намного однородной воздушной и водной обстановке подобных условий для концентрации электричества нет.

Как получить электрическую энергию из земли

Потому как в почве есть и электричество, и электролиты, то можно её рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Более того, наши электрифицированные дома концентрируют в обстановке вокруг себя и то электричество, которое «течет» чрез заземление. Этим невозможно не воспользоваться.

Очень часто владельцы собственных домов используют следующие способы извлечения электрической энергии из грунта, размещенного возле дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в помещения для жилья подается через 2 проводника: фазный и нулевой. При разработке 3-го, заземлённого, проводника между ним и нулевым контактом появляется напряжение от 10 до 20 В. Такого напряжения достаточно для того, чтобы зажечь пару лампочек.

Подобным образом, для подсоединения потребителей электрической энергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут улучшить и получить ток большего напряжения.

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества построен на применении только земли. Берутся два железных стрежня – один цинковый, другой медный, и помещаются в почву. Идеально, если это будет грунт в изолированном пространстве.

Изоляция нужна для того, чтобы создать среду с очень высокой солёностью, что несовместимо с жизнью – в таком грунте ничего не будет расти. Стержни сделают разницу потенциалов, а грунт станет электролитом.

В упрощенном варианте получаем напряжение в 3 В. Этого, разумеется мало для дома, но систему можно осложнить, увеличив таким образом мощность.

Способ 3 — Потенциал между крышей и землёй

3. Довольно большую разница потенциалов можно сделать между крышей дома и землёй. Если на крыше поверхность железная, а в земля – ферритовая, то можно достигнуть разницы потенциалов в 3 В. Расширить данный показатель можно благодаря изменению размеров пластин, и также расстояния между ними.

Как получить электричество из земли: схема Белоусова

Недра земли имеют почти что неисчерпаемый потенциал, и при вашем желании их можно применять в качестве энергетического источника. Есть несколько вариантов получения электричества из земли. Схемы эти могут полностью разниться один от одного, однако результат будет схожим. Он заключен в бесперебойном обеспечении электрической энергией с небольшими затратами на ее получение.

Натуральные источники энергии

В наше время человечество пытается найти более доступные альтернативы для обеспечения своего дома электроэнергией. А все из-за того, что жизненный уровень очень быстро растет, а одновременно с ним становятся больше и расходы на работы по обслуживанию жилищных помещений привычными способами. Другими словами собственно большая цена и постоянный рост расценок на услуги ЖКХ заставляет людей искать довольно дешевые источники энергии, которые также обеспечат световую подачу и тепла в дома.

Сейчас пользуются большой популярностью трансформирующие энергию из воздуха ветроустановки, находящиеся на открытых пространствах, фотоэлектрические панели, которые ставятся прямо на крышах домов, и также самые разные водяные системы разной степени трудности. А вот идея добывать энергию из недр земли из-за чего то очень нечасто применяется в работе, разве что при выполнении непрофессиональных экспериментов.

Между тем прямо сейчас домашние мастера рекомендуют несколько самых простых, но одновременно с тем достаточно прекрасных способов добычи электричества из земли для дома.

Очень простые способы добычи

Это не является секретом, что в почве (в отличии от воздушной среды) регулярно происходят электрохимические процессы, причина которых прячется во взаимном действии положительных и отрицательных зарядов, исходящих от внешней оболочки и недр. Данные процессы разрешают рассматривать землю не только как мама всего живого, но и в виде мощнейшего источника энергии. А Для того чтобы воспользоваться им в бытовых нуждах, мастера очень часто прибегают к трем проверенным способам добычи электричества из земли собственными руками. К ним относят:

  1. Способ с нулевым проводом.
  2. Способ с одновременным использованием 2-ух различных электродов.
  3. Потенциал различных высот.

В первом варианте обеспечение помещения для проживания напряжением, достаточным для того, чтобы горело как минимум несколько лампочек, выполняется за счёт фазового и нулевого проводника. Однако чтобы достигнуть поставленной цели, лампочку нужно присоединить не только к нулю, но и к заземлению, ведь если помещение для жилья оборудовано качественным заземляющим контуром, то значительная часть используемой энергии уходит в грунт, а такой контакт способствует ее оттуда отчасти возвращать.

?

Практически речь идет о самой простой схеме «нулевой проводник — нагрузка — грунт», в которой вырабатываемая энергия не выводится на общий приборный счетчик, другими словами ее применение считается бесплатным. Но есть у такого способа и серьёзный недостаток, который состоит в более чем невысоком напряжении, колеблющемся в диапазоне от 10 до 20 вольт, и если появилось желание расширить данный показатель, тогда нужно будет улучшить конструкцию, используя детали сложнее.

Способ энергодобычи при помощи применения 2-ух различных электродов еще легче, так как для его использования в работе применяется одна только почва. Естественно, это не может не отобразиться и на завершенном результате эксперимента, благодаря этому очень часто аналогичные схемы не предоставляют возможность получать напряжение больше 3 вольт, хотя данный показатель имеет особенность меняться в какую-то определенную сторону в зависимости от влаги и почвенного состава.

Для проведения опыта достаточно загрузить в грунт два различных проводника (в большинстве случаев в ход идут стержни из меди и цинка), которые предназначаются для создания разности между негативным (цинк) и позитивным (медь) потенциалами. Обеспечить их взаимное действие между собой поможет концентрированный электролитный раствор, который можно подготовить собственными силами, применяя дистиллированную воду и обыкновенную поваренную соль.

Уровень вырабатываемого напряжения можно поднять, если глубже загрузить электродные стержни и сделать больше концентрацию соли в применяемом растворе. Главную роль в данном вопросе играет и площадь поперечного сечения самих электродов. Интересно, что грунт, хорошо политый электролитом, больше не сумеет использоваться для выращивания любых растений и культур. Данный момент обязательно необходимо взять во внимание, предусматривая высококачественную изоляцию чтобы не было засоления находящихся рядом участков.

Разница потенциалов может быть обеспечена и подобными элементами, как крыша приватного дома и грунт, но при условиях, что кровля будет сделана из любого сплава металла, а поверхность земли закрыта ферритом.

Однако и такой способ не даст существенных результатов, так как усредненный норматив напряжения, которое получится получить этим способом, как правило не будет больше 3 вольта.

Альтернативная методика

Если рассматривать земной шар как один большой сферообразный конденсатор с негативным внутренним потенциалом, а его оболочку как источник хорошей энергии, атмосферу как изолятор, а магнитное поле как электрический генератор, то для получения энергии довольно будет просто подсоединиться к этому природному генератору, обеспечив надежное заземление. При этом конструкция самого устройства должна обязательно в себя включать такие элементы:

  • Проводник в виде пирона, высота которого должна превосходить все расположенные в близи объекты.
  • Качественный заземляющий контур, к которому подводится железный проводник.
  • Любой эмиттер, способный гарантировать свободный выход электронов из проводника. В качестве такого элемента может быть применен мощный электрический генератор либо даже традиционная катушка Тесла.

Весь смысл такого способа состоит в том, что высота применяемого проводника должна давать такую разницу разных потенциалов, которая даст возможность электродам двигаться не вниз, а вверх по погруженному в почву пирону.

Что касается эмиттера, то его центральная роль состоит в высвобождении электродов, которые проникают во внешнюю среду уже в виде чистых ионов.

И как только погодный и электромагнитный потенциал земли сравняются, начнется выработка энергии. К этому моменту к конструкции уже обязан быть подключен ее сторонний покупатель. В данном случае показатель силы тока в электроцепи будет полностью зависеть от того, насколько мощным окажется эмиттер. Чем выше его потенциал, тем большее количество потребителей можно подсоединять к генератору.

Естественно, соорудить подобную конструкцию в границах пунктов проживания самостоятельно как правило невозможно, ведь все упирается в высоту проводника, которая обязана превосходить деревья и все строения, но сама идея может стать основанием для создания больших проектов, разрешающих получать электричество из земли даром.

Электрическая энергия из земли по Белоусову

Большого внимания удостаивается доктрина Валерия Белоусова, который на протяжении долгого времени занимается глубоким изучением молний и изобретением наиболее хорошей защиты от этого опасного натурального явления. Более того, этот ученый считается автором нескольких уникальных в собственном роде книг, в которых изложено альтернативное видение процесса выработки и поглощения электроэнергии земными недрами.

Схема с двойным заземлением

Один из вариантов получения электричества из земли предполагает применение двойного заземления, позволяющего выводить энергию из грунта в быту бесплатно.

При этом схема подразумевает наличие единственного заземляющего контура пассивного типа без активатора, важная задача которого состоит в принятии одностороннего заряда в первом полупериоде с будущим его возвращением обратно при переходе в фазу второго полупериода. Другими словами идет речь о своеобразном буфере обмена, роль которого может сыграть обыкновенная газовая труба, подведенная в стандартную жилую площадь.

Сооружение конструкции и сущность опыта

Дальнейшая сборка конструкции подразумевает выполнение следующих действий:

  1. Чтобы обеспечить пропуск волновых частот, на пассивный контур следует установить трансформаторную катушку, главное предназначение которой сводится к блокировке высокочастотных зарядов. Разрешается применение любой катушки, которую рекомендуется дополнить несколькими виточками изолированного провода.
  2. Делается разводка, один конец которой подводится к газовой трубе, выполняющей роль пассивного контура, а второй фиксируется к конденсатору, благодаря чему и должны подаваться и возвращаться обратно волновые колебания при одновременной блокировке проникания электрического тока в цепь.
  3. В промежуточном разрыве ставятся два конденсатора, которые должны находиться «плюсами» в отношении друг к другу, что даст возможность заставить все протекающие в цепи энергии исполнять роль единого конденсатора.
  4. К обмотке конденсатора подсоединяется обыкновенная LED лампа напряжением в 220 вольт, которая обязана замигать, если все было выполнено правильно.

На этом опыт можно считать законченным. Главная его цель заключалась в том, чтобы показать наличие в цепи сразу нескольких энергий, одна из которых не считается электрической.

Такой вид неизвестной доселе энергии автор именовал «белой», сопоставив ее с чистым листом бумаги, на которую при вашем желании можно положить все все что угодно, открыв для всего человечества принципиально хорошие возможности. Но главная идея, которую выделяет автор, состоит в том, что все энергии на земле протекают персонально по собственным законам, Но это все происходит в общем пространстве.

Бесплатное электричество существует?! Мини электрическая станция..

Навигация по записям

из земли и воздуха, схема своими руками, видео, из ничего и из эфира, халявное

Благодаря современным технологиям бесплатное электричество можно добывать из земли и воздухаВ наш век высоких технологий трудно представить свою жизнь без электричества. На этом ресурсе работает практически вся наша домашняя техника, без которой жизнь станет более сложной и менее интересной. Однако с сегодняшними ценами на электричество, многие задумываются о возможности получать подобный вид энергии бесплатно. Поэтому, сегодня мы решили вам рассказать, о нескольких интересных вариантах. Нет, мы не будем описывать способы обмана коммунальных служб или убеждать вас, что без большинства электроприборов можно обойтись. Мы расскажем вам о четырех самых необычных вариантов получения необходимого всем природного ресурса.

Немного о том, что такое бесплатное электричество

На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.

Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел. В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.

Более того, многие твердотопливные печи имеют варочные поверхности и духовки. Используя такой прибор, вы можете вовсе отказаться от проведения газа в свой дом.

С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.

Какое может быть бесплатное электричество для дома:

  • Самым распространенным считается электричество, полученное от энергии солнца;
  • Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
  • Очень интересно получение статического электричества из земли;
  • Электрический ток также можно вырабатывать из эфира;
  • На грани фантастики кажется халявное электричество из нечего;
  • Как оказалось, из магнитного поля тоже можно добывать электричество;
  • Возможна добыча электричества из дерева, воды и других подручных средств.

Некоторые из этих способов способны обеспечить электричеством лишь маленькую лампочку. Других хватит, чтобы заставить работать как минимум половину электроприборов в доме.

Домашний генератор электроэнергии «на халяву» создать невозможно. Ведь на материал для таких устройств нужно потратить некоторые деньги. Поэтому, говоря: «Выработка электричества на шару», мы имеем ввиду дешевое электричество, если, конечно, речь идет не про Anticlove.

Добывать бесплатное электричество можно с помощью простых технических приспособлений

Сегодня мы расскажем вам о нескольких, самых перспективных альтернативных способах добычи электричества. Также мы поговорим о возможности получения электроэнергии из нечего.

Можно ли получать электричество из земли

Одним из самых интересных и невероятных способов, как добыть электричество, является его получение из земли. Интересно? Еще бы! Ведь в отличие от энергии из атомных частицу и солнечных батарей, такой способ добычи энергии пока не получил всеобщего распространения.

В домашних условиях можно получить не только свет, но и необходимое количество тепла. Для этого можно использовать твердотопливные печи или котлы.

Вам, наверное, интересно, как получают электричество из земли. Здесь все не так просто. Дело в том, что земля не только сочетает в себе три среды, ведь между земляными частицами находятся молекулы воды и воздуха, но и состоит из структур, мицеллы и гумуса, имеющих разные потенциалы.

Из за этого внешняя оболочка земли имеет отрицательный заряд, а внутренняя – положительный. Как вы знаете, положительные частицы притягиваются к отрицательным. За счет этого в почве происходят электрические процессы. Попробовать сделать земляную электростанцию можно своими руками. Для этого нужно знать основы электротехники, но мы вам расскажем краткое пособие по созданию такой конструкции. Итак, как можно добыть земное электричество.

Схема создания земляной электростанции:

  • В землю помещается металлический проводник;
  • К проводнику присоединяется два других проводника ноль и фаза;
  • По этим проводникам электричество течет в дом.

Конечно, такая схема не позволит вам получить свет на весь дом. Ведь в лучшем случае вы получите всего 20 вольт, которых будет достаточно для того, чтобы зажечь пару лампочек. Однако усовершенствуя систему, вы сможете снять нагрузку с части электроприборов.

Способы получения электричества из воздуха

Атмосферное электричество можно получать в больших количествах. К тому же данный вариант обеспечения дома не относится к разряду «необычные способы». Ведь все знают о существовании ветряных электростанций.

Существуют целые поля ветряных электростанций. Они похожи на ряды с огромными вентиляторами. Однако минус такой системы заключается в том, что она вырабатывает электроэнергию. Только когда есть ветер.

На самом деле, взять электроэнергию из атмосферы можно не только из ветра. Есть и другие более интересные способы. Ведь на самом деле воздух – эта самая заряженная стихия.

Источники освещения, работающие от атмосферы:

  1. Грозовые батареи притягивают молнии. Они состоят из заземления и металлического проводника, между которыми во время удара молнии накапливается свободная энергия. Однако использование такого способа не распространено потому, что невозможно предсказать величину накопившейся электроэнергии, а также из-за опасности этого изделия.
  2. Ветрогенираторы – это известный всем способ добычи энергии. Вы можете сделать такую станцию и для себя. Однако в этом случае вам придется рассчитать необходимое количество приборов, а также установить их в месте, которое будет максимально ветряным.
  3. Тороидальный генератор Стивена Марка вырабатывает электричество не сразу, а через некоторое время после его включения. Такое автономное устройство состоит из нескольких катушек, между которыми образуется резонансные частоты и магнитный вихрь. Такие самодельные приборы добывают достаточно электричества для обслуживания одного электроприбора.
  4. Прибор Капанадзе, вопреки мнению многих состоит не из магнита и проволоки, он сделан по тому же принципу, что и трансформатор Тесла. Он получает эфирное электричество и работает без топлива. Однако устройство такого прибора запатентовано и засекроечено.

Электричество из воздуха очень часто добывают в скандинавских странах

Такие варианты добычи электричества из атмосферы очень перспективны. Это новые способы получения этого ресурса, некоторые из которых уже используются в Европе. Некоторые из них можно собрать самому и вполне возможно, все люди будут получать электричество даром из таких приборов.

Халявное электричество из солнца

Большой популярностью в Европе пользуются солнечные батареи. Вы наверняка слышали об этом способе добычи электричества. И это действительно работает, и не является вариантом, как заработать на стекле.

Если вам интересно лучше разобраться в способах получения электричества. Обратитесь к Валерию Белоусову, который выкладывает свои видео на Ютубе.

Конечно, чтобы пользоваться такой энергией, нужно сначала серьезно потратиться, ведь солнечные батареи стоят недешево, а чтобы обеспечить такой энергией весь дом, их нужно будет купить много. Также нужно учитывать, что если ваш дом в лесу преобразовать солнечную энергию в электричество не получится. Проблемы могут возникнуть и в холодное время года. Однако у солнечных станций есть несколько весомых преимуществ.

Преимущества солнечных электростанций:

  • Солнечная энергия вечная;
  • Она не выделяет в среду вредных веществ и не способствует накоплению радиоволн;
  • Вы сможете заранее рассчитать, сколько сможете получить энергии от того или иного количества батарей;
  • Цена потраченная на батареи со временем окупится за счет сэкономленных на электроэнергии средств.

Солнечная электроэнергия – это отличная альтернатива централизованному электричеств. С ее помощью может быть обеспечена вся ваша электрика.

Электричество из воздуха своими руками: схема (видео)

Также стоит отметить о возможности получения электроэнергии из ниоткуда. Один предприимчивый датчик решил получить электричество из пирамиды, и к его удивлению после создания такой конструкции на участке и подключению ее к светильникам, лампочки загорелись. На самом деле данная энергия берется из земли, а не из «ничего», и как сделать такой прибор повествует специализированная книга.

Добавить комментарий

Бесплатное электричество — лучшие идеи и советы по их реализации (75 фото устройств)

Что такое альтернативная энергетика? Современный мир предлагает способы создания бесплатного электричества. Как его сделать своими руками?

Краткое содержимое статьи:

Альтернатива

В 1901 году знаменитый, гениальный учёный Николай Тесла сконструировал огромную башню Ворденклиф в Нью-Йорке. Компания JP Morgan взяла на себя финансовую часть проекта. Тесла хотел осуществить бесплатную радиосвязь и снабдить человечество бесплатным электричеством. Морган же просто ожидал беспроводную международную связь.

Идея бесплатного электричества привела в ужас промышленные и финансовые “Тузы”. Желающих революций в мировой экономике не оказалось, все держались за сверхприбыли. Поэтому проект свернули.

Так что же построил Тесла? Как он собирался сделать бесплатное электричество? В XXI веке всё большую поддержку получает идея альтернативной энергетики, работающей на других источниках. Своеобразным оппонентом нефти, углю, газу здесь выступают возобновляемые ресурсы Земли и других планет.


Из чего можно получить бесплатное электричество? Солнечный свет, энергия ветра, земли, использование приливов и отливов, мускульная энергия человеческого тела могут изменить будущее планеты. Уйдут в прошлое трубопроводы, саркофаги реакторов. Многие государства смогут освободить свою экономику от необходимости закупать дорогостоящие источники электричества.

Поиску альтернативных источников энергии, которые легко возобновляются, уделяют большое внимание. В последние десятилетия человечество волнуют проблемы чистоты экологии, экономичности ресурсов.

Технология

Чуть ниже рассматриваются варианты получения бесплатного электричества.

Ветряная электростанция. Голландия предлагает построить ветряную ферму огромных размеров в Северном море, и искусственный, оснащённый необходимым оборудованием остров, который возьмёт на себя роль энергетического хаба, распределяя электричество между 5 государствами.

Саудовская Аравия предложила создать турбины в виде “бумажных змеев”, и расположить их в воздухе, а не на земле. Несколько  стран имеют собственные поля с ветряными генераторами.

Солнечная электростанция. В продаже есть крыши, состоящие из солнечных панелей, а также панели из фотогальванического стекла, которыми можно облицовывать наружные стены домов. Американские учёные выпустили солнечные батареи в форме прозрачных плиток, которыми можно застеклить окна, чтобы вырабатывать электричество для дома.


Грозовая батарея – накопитель энергии от разрядов в атмосфере. Молнии перенаправляются в электросеть.

Тороидальный генератор TPU состоит из 3 катушек. Магнитный вихрь и резонансные частоты являются причиной появления тока. Изобрёл его С.Марк.

Приливные электростанции – работа зависит от приливов и отливов, положения Земли и Луны.

Тепловая электростанция – в качестве ресурса используются высокотемпературные грунтовые воды.

Сила человеческих мускулов – люди также вырабатывают энергию при движении, что можно использовать.

Термоядерный синтез – процессом можно управлять. Синтезируются более тяжёлые ядра из более лёгких. Способ не применяется, поскольку очень опасен.

Сам себе мастер

Бесплатное электричество можно сделать своими руками. Существует немало методов, чтобы соорудить устройства, вырабатывающие энергию. Для этого нужно лишь немного знаний и умений. Например:


Сделать элемент Пельтье – пластина, термоэлектрический преобразователь. Тепло получают от горящего источника, охлаждение производится теплообменником. Составляющие сделаны из неодинаковых металлов.

Соорудить генератор, собирающий радиоволны – парные конденсаторы, электролитические, плёночные, диоды маленькой мощности. Изолированный кабель 15 м применяют в роли антенны. Заземляющий провод крепится к газовой, водопроводной трубе.

Сконструировать термоэлектрический генератор- потребуются стабилизатор напряжения, корпус, охлаждающие радиаторы, термопаста, нагревающие пластины Пельтье.

Построить грозовую батарею – металлическая антенна и заземление. Потенциал накапливается между элементами устройства. Метод опасен, так как притягиваются молнии, чьё напряжение достигает 2000 Вольт.

Гальванический метод – медный и алюминиевый стержни вставляются в землю, на глубину 0,5 м, площадь между ними обрабатывают солевым раствором.

Что ещё?

Среди обычных, можно встретить и довольно необычные способы получения электричества. В последнее время идёт интенсивная работа учёных всего мира по развитию альтернативной энергетики. Мир ищет возможности для более широкого её использования.

Чуть ниже приводится небольшой обзор лучших способов и идей:


Термический генератор – преобразовывает тепловую энергию в электрическую. Встроен в отопительно-варочные печи.

Пьезоэлектрический генератор – работает на кинетической энергии. Внедряют в Танцполы, турникеты, тренажёры.

Наногенератор – применяется энергия колебаний человеческого тела при движении. Процесс отличается мгновенностью. Учёные работают над совмещением работы наногенератора и солнечной батареи.

Безтопливный генератор Капанадзе – работает на постоянных магнитах в роторе и бифлярных катушках в статоре. Мощность 1-10 кВт. За основу взято одно из изобретений Н.Тесла, но многие не верят в этот принцип. Ещё по одной из версий, настоящая технология аппарата удерживается в большом секрете.

Экспериментальные установки, которые работают на эфире – электро-магнитное поле. Пока ещё идут поиски, проверяются гипотезы, проводятся эксперименты.

Учёные подсчитали, что природных запасов, используемых в современной энергетике, может хватить ещё на 60 лет. Разработками в данной области занимаются лучшие умы. В Дании население пользуется ветровой энергетикой, составляющей 25%.

В России планируются проекты, по использованию восстанавливаемых источников в энергетической системе на 10%, а в Австралии на 8%. В Швейцарии большинство проголосовало за полный переход на альтернативную энергетику. Мир голосует за!

Фото методов получения бесплатного электричества

Нанотехнологии позволят добывать бесплатное электричество из сигналов Wi-Fi

Новая наука спинтроника об эффектах, связанных с переносом спина заряжённых частиц, позволяет создавать не только перспективную магниторезистивную память, но также обещает прорыв в выработке электричества из «мусорного» радиочастотного излучения. Сегодня в городах пространство перенасыщено всевозможными частотами, энергия которых в подавляющем большинстве рассеивается без пользы. Добыть из неё электричество — заманчивая цель.

Чип, который добывает электричество из «воздуха». Источник изображения: NUS

Исследователи из Национального университета Сингапура (NUS) и японского Университета Тохоку (TU) создали на кристалле массив из 50 так называемых спин-трансферных осцилляторов (генераторов). Каждый из крошечных генераторов состоял из целого каскада тонких слоёв из диэлектрических и магнитных материалов. Такие же материалы, но в меньшем числе используются для производства памяти STT-MRAM.

В этих материалах под воздействием внешнего магнитного поля — радиочастотного излучения — возникают автоколебания с генерацией спин поляризованного тока. Последовательное или параллельное соединение нескольких десятков таких генераторов позволяет получить достаточно большой ток, чтобы зарядить конденсатор и запитать простенькую электронику.

Созданный учёными чип по добыче электричества из излучения частотой 2,4 ГГц — это один из самых распространённых несущих сигналов Wi-Fi — за пять секунд заряжал конденсатор в схеме и затем около минуты держал зажжённым светодиод с напряжением питания 1,6 В. В теории, и учёные будут этого добиваться в опытах, можно создать рабочую схему с зарядкой аккумулятора от сигнала Wi-Fi с последующим автономным питанием простейших устройств Интернета вещей.

Источник изображения: Nature Communications

Для создания рабочей схемы из массива добывающих осцилляторов исследователям пришлось решить массу проблем, включая синхронизацию осцилляторов и компенсацию их воздействия друг на друга. Эффекты с переносом спина настолько тонкие, что физика процессов включает возникновение и взаимное влияние магнитных вихрей в материалах в отдельных осцилляторах. Поэтому синхронизация включает как временные, так и пространственные факторы. Проще говоря, на выработку электричества влияет даже геометрия размещения генераторов на кристалле, как и существенно отличаются режимы генерации при последовательном и при параллельном включении осцилляторов.

Подробно об исследовании можно прочесть в статье в Nature Communications. Статья свободно доступна по ссылке.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Электричество из земли своими руками

Затраты на электроэнергию растут с каждым повышением тарифов. И если городские жители для уменьшения финансовых трат сокращают лишнее потребление электроэнергии, то владельцы частных домов имеют возможность дополнительно получать электричество из земли.

Получаем бесплатное электричество из земли

Вопрос эффективности

Получение электричества из земли окутано мифами – в Интернет регулярно выкладываются материалы на тему получения бесплатной электроэнергии за счет использования неисчерпаемого потенциала электромагнитного поля планеты. Однако многочисленные видео, на которых самодельные установки добывают ток из земли и заставляют сиять многоваттные лампочки или крутиться электромоторы, являются мошенническими. Если бы получение электричества из земли было настолько эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.

Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.

Напряжение из магнитного поля Земли — возможно ли!?

Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов. Найти разность потенциалов проще всего в земле, которая объединяет все три среды – твердую, жидкую и газообразную. По своей структуре грунт представляет собой твердые частички, между которыми присутствуют молекулы воды и пузырьки воздуха.

Важно знать, что элементарной единицей почвы является глинисто-гумусовый комплекс (мицелла), который обладает определенной разностью потенциалов. Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный. За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы. Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для добычи электроэнергии.

Способ с двумя электродами

Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.

Мощность такого гальванического элемента зависит от целого ряда факторов, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т.д.

Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.

Добыча электричества с помощью 2-х стержней

Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.

Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.

Способ с нулевым проводом

Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.

Добыча электричества с помощью нулевого провода

Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.

Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя. Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.

Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.

Энергия магнитного поля планеты

Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.

Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных источников, должно состоять из следующих элементов:

  • проводник;
  • заземляющий контур, к которому подсоединен проводник;
  • эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).

Схема получения электроэнергии

Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.

К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.

Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.

Видео по теме:

Из этого следует

Электроэнергия из земли потенциально может быть добыта, но сегодня нет технологий, которые позволяют сделать это эффективно. Если есть свой дом с участком, то можно поэкспериментировать с созданием земляной батареи из листов меди и алюминиевой фольги – чертежи и фотографии легко найти в Интернете. Но практика показывает, что мощность сделанного конденсатора заметно ниже заявленной и конструкция быстро выходит из строя. При этом финансовые затраты на материалы вряд ли когда-либо окупятся.

Бесплатное электричество своими руками видео

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы. В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться.

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.

Виды добычи

Альтернативное электричество может добываться из воздуха двумя способами:

  1. Ветрогенераторами;
  2. За счет полей, пронизывающих атмосферу.

Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

Фото — грозовая батарея

Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

Фото — ветряки

Видео: создание электричества из воздуха

Как добыть энергию из воздуха

Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

Фото — схема

Схема имеет свои достоинства:

  1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
  2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.

Недостатки:

  1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
  2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

Фото — люстра Чижевского

Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

  1. Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера; Фото — основание
  2. Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
  3. Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала; Фото — четыре катушки
  4. Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
  5. Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания. Фото — конечная обмотка

На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

Фото — предположительная схема генератора Капанадзе

В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

Бесплатное электричество из воздуха своими руками: работающие схемы и проекты

Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.

Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.

Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.

Электричество из воздуха: схемы, прошедшие проверку качества

Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.

Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.

В числе достоинств предлагаемого решения:

  • Доступность реализации в домашних условиях;
  • Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.

Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.

Схема получения электричества из воздуха по проекту Стивена Марка

Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.

Схема получения электричества из воздуха выглядит следующим образом:

  • Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
  • Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
  • Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
  • Устанавливается конденсатор на 10 микрофарад.
  • Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.

Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.

Несколько полезных советов по технике безопасности

  • Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
  • Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.

Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.

Как собирать свободную энергию из атмосферы

Схема коллектора свободной энергии помогает преобразовывать окружающие радиоволны в электрическую энергию и может обеспечивать от 40 Вт до 10 Вт на неопределенный срок.

Принципиальная схема

Возможность увеличения выходной мощности достигается за счет правильной настройки антенны. Размещение антенны в непосредственной близости от большого металлического объекта помогает генерировать дополнительную мощность.

Провод антенны должен быть более 150 футов в длину, который должен быть размещен горизонтально на более высокой платформе для получения наилучшего результата.

Чем выше установлена ​​антенна, тем эффективнее она работает. Однако рекомендуется держать схему ближе к антенне.

Предлагаемая схема коллектора свободной энергии, с другой стороны, также действует как пассивный детектор. Когда большой металлический объект проходит через волну, мощность увеличивается. Одно из основных применений этого процесса — в области вулканических исследований.

Выбор антенны

Чувствительность антенны позволяет обнаруживать колебания энергии от земли и часто используется для приема сигнала предупреждения о возможной сейсмической активности.

Итак, можно резюмировать, что размещение антенны очень важно для лучшего вывода. Также можно использовать многие из этих цепей для создания и соединения их входов вместе, чтобы производить достаточно энергии для подачи электричества в дом. Однако следует отметить, что каждому устройству нужна собственная антенна, чтобы построить такую ​​же.

Мощность радиочастоты зависит от местоположения. Если место установки находится недалеко от города или в непосредственной близости от передатчиков, которые генерируют высокий уровень радиочастоты; приводит к оптимальной производительности.

Если вам нравится генерировать бесплатную энергию в вашем доме из атмосферы, вы можете провести некоторый эксперимент с другой длиной и размером антенны.

Высота имеет решающее значение

Однако не забывайте размещать антенну на более высоком месте для лучшего результата. Во время строительства также необходимо учитывать, что заземление цепи должно быть надлежащим образом проводящим. Заземление также должно состоять из металлической токопроводящей трубы или стержня.

Дополнительные схемы свободной энергии можно найти по следующей ссылке:

Устройства бесплатной энергии, которые вы можете построить дома

Представлено: Dhrubajyoti Biswas

Схема цепи
Список деталей

Все диоды — 1N4148

C1— -C8 = 0.22 мкФ / 100 В майлар

C9 —- C16 = 33 мкФ / 25 В электролитический

Улучшение устройства свободной энергии

Один из заинтересованных читателей этого блога г-н Прашант послал мне следующую более полную схему получения свободной энергии. Дхонде.

Дополнительная информация о приведенной выше конструкции:

Использование диодов быстрого восстановления

Для выработки большего количества электроэнергии можно использовать большее количество диодов. Для правильной работы решающую роль играет тип диодов и конструкция антенны.

Для начала давайте приступим к настройке антенны. Чтобы правильно установить антенну, необходимо учесть несколько ключевых моментов.

Антенна должна быть сделана из феррита, а высота стержня 30 дюймов — идеальный вариант для установки антенны для приема радиоволн.

Что касается диодов, Geranium диоды с самыми низкими потерями и низким напряжением пробоя ~ 0,2 — 0,4 В идеально подходят, если вы не можете найти, вы можете использовать обычный 1N4148, просто подойдет.

Радиоволна перехватывается в районах с повышенной концентрацией и заторами. В такой ситуации видно, что каждый диод может потреблять около 30 мВ.

(PDF) Бесплатная электрическая схема Николы Теслы

Mitra. J Electron Commun 2018, 1 (1): 1-6

Том 1 | Выпуск 1

* Автор, ответственный за переписку: Ману Митра, инженер-электрик-

ing, Университет Бриджпорта, Коннектикут, США,

Эл. Почта: [email protected]

Поступила: 26.10.2017; Принята в печать: 03 марта 2018 г .;

Опубликовано онлайн: 5 марта 2018 г.

Образец цитирования: Mitra M (2018) Бесплатная электроэнергия Николы Теслы

Электронная схема. J Electron Commun 1 (1): 1-6

Авторские права: © 2018 Mitra M. Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution

, которая разрешает неограниченное использование, распространение и воспроизведение в любой носитель, при условии упоминания оригинального автора и источника

.

Обзорная статья Открытый доступ

Журнал

Электроника и связь

• Страница 1 •

Бесплатная электрическая электронная схема Николы Теслы

Ману Митра *

Кафедра электротехники, Университет Бриджпорта, Коннектикут, США

Аннотация

Никола Тесла был изобретателем, наиболее известным своим вкладом в разработку системы генерации переменного тока,

Системы электроснабжения и т. Д.Он получил около трехсот патентов по всему миру на свои изобретения, и некоторые из них

скрыты в патентных архивах. Один из патентов, в которых обсуждается предоставление бесплатного электричества, «Метод использования лучистой энергии» был успешно продемонстрирован

, но так и не был завершен.

Внимательно прочитав статьи и патентную заявку Tesla; Конструкция электронной схемы для бесплатного электричества может быть построена

. Хотя нет очевидной причины генерировать киловатты энергии с помощью простой схемы.В этой статье

дается понимание и обзор изобретения Николы Теслы в области бесплатного электричества.

Ключевые слова

Никола Тесла, Лучистая энергия, Электронная схема, Электроника, Бесплатное электричество, Статическое электричество

Введение

Одной из попыток Николы Теслы обеспечить бесплатной энергией каждого

человека в мире была его World Power

Система

, метод передачи электроэнергии с помощью проводов через землю, которая так и не была завершена,

, но его мечта обеспечить энергией все точки на земном шаре

все еще жива [1].

Тесла намеревался сконденсировать энергию, захваченную между землей и ее верхними слоями атмосферы, и преобразовать ее в электрический ток. Он представил солнце как

огромный электрический шар, положительно заряженный с потенциалом

около двухсот миллиардов вольт. С другой стороны,

— земля заряжена отрицательным электричеством. Тре-

взаимная электрическая сила между этими двумя телами составляла, по крайней мере частично, то, что он называл космической энергией.Он

менялся от дня к ночи и от сезона к сезону, но он

присутствует всегда [2].

В 1931 году Тесла объявил в Brooklyn Eagle, что

«Я использовал космические лучи и заставил их управлять двигателем.

». Более 25 лет назад я начал

своих попыток обуздать космические лучи. космические лучи, и я добился успеха —

ред. Электроэнергия присутствует повсюду, в неограниченном количестве

качеств. Эта новая энергия для привода

машин в мире будет производиться из энергии, которая действует в мире. вселенная, без потребности в угле, газе, нефти или

любом другом топливе «.

Настоящей причиной интереса Николы Теслы к бесплатной энергии

было то, что он узнал, что на планете было потепление, вызванное

естественными и искусственными источниками атмосферного загрязнения —

муравьями. Возможно, Тесла был первым человеком, который узнал, что теперь это

под названием «Глобальное потепление» и «Парниковый эффект».

Спустя много лет, в 2003 году Мартином Эберхардом и Марком была зарегистрирована компания Tesla

Motors.

Тарпеннинг имени Николы Теслы, компания

должна была коммерциализировать электромобили, используя двигатель переменного тока. Тор, который был построен на основе проекта, который

Никола спроектировал в 1882 году.В феврале 2004 года Илон Маск, соучредитель

PayPal, инвестировал в Tesla и стал председателем компании

. Tesla Motors создала

нескольких электромобилей, каждый из которых экономит на затратах на электроэнергию, а

помогают окружающей среде, производя нулевые выбросы. Вместо

заправочных станций, автомобили Tesla можно заряжать с помощью

любой из множества бесплатных зарядных станций, владельцы Tesla

могут просто подключить свои автомобили и примерно за 20 минут

полностью перезарядить свою машину, встряхнув. вверх двигателя в-

Текущее электричество — Science World

Цели

  • Опишите компоненты, необходимые для замыкания электрической цепи.

  • Продемонстрируйте различные способы завершения цепи (параллельной или последовательной).

  • Определите, как электричество используется в бытовых приборах.

  • Опишите взаимосвязь между электроном и текущим электричеством.

Материалы

Фон

Электричество используется для работы вашего мобильного телефона, силовых поездов и кораблей, для работы холодильника и двигателей в таких машинах, как кухонные комбайны. Электрическая энергия должна быть заменена на другие формы энергии, такие как тепловая, световая или механическая, чтобы быть полезной.

Все, что мы видим, состоит из крошечных частиц, называемых атомами. Атомы состоят из еще более мелких частей, называемых протонами, электронами и нейтронами.Атом обычно имеет одинаковое количество протонов (которые имеют положительный заряд) и электронов (которые имеют отрицательный заряд). Иногда электроны можно отодвинуть от своих атомов.

Электрический ток — это движение электронов по проводу. Электрический ток измеряется в амперах, (ампер) и относится к количеству зарядов, которые перемещаются по проводу за секунду.

Для протекания тока цепь должна быть замкнута; Другими словами, должен быть непрерывный путь от источника питания через цепь, а затем обратно к источнику питания.

Параллельная цепь (вверху)

Последовательная цепь (внизу)

Напряжение иногда называют электрическим потенциалом и измеряется в вольтах . Напряжение между двумя точками в цепи — это полная энергия, необходимая для перемещения небольшого электрического заряда из одной точки в другую, деленная на размер заряда.

Сопротивление измеряется в Ом и относится к силам, которые противодействуют потоку электронного тока в проводе.Мы можем использовать сопротивление в своих интересах, преобразовывая электрическую энергию, потерянную в резисторе, в тепловую энергию (например, в электрической плите), световую энергию (лампочка), звуковую энергию (радио), механическую энергию (электрический вентилятор) или магнитную энергию. энергия (электромагнит). Если мы хотим, чтобы ток протекал напрямую из одной точки в другую, мы должны использовать провод с минимально возможным сопротивлением.

Аккуратная аналогия, помогающая понять эти тер мс: система водопроводных труб.

  • Напряжение эквивалентно давлению воды, которая выталкивает воду в трубу
  • Ток эквивалентен расходу воды
  • Сопротивление похоже на ширину трубы — чем тоньше труба, тем выше сопротивление и тем труднее проходит вода.

В этой серии заданий учащиеся будут экспериментировать с проводами, батареями и переключателями, чтобы создать свои собственные электрические цепи, одновременно изучая напряжение, ток и сопротивление.

Интересный факт!

Вы можете заметить, что символы для некоторых единиц СИ (Международной системы единиц) в этом плане урока написаны с заглавной буквы, например, вольт (В) и ампер (А), в отличие от тех, к которым вы привыкли. используя (м, кг). При названии единицы в честь человека принято использовать заглавную букву. В этих случаях подразделения были названы в честь Алессандро Вольта и Андре-Мари Ампера. Единица измерения сопротивления также была названа в честь человека (Георг Симон Ома), но использует символ Ω, который представляет греческую букву омега.Эти правила важно соблюдать, поскольку строчные и прописные буквы могут означать разные единицы измерения, такие как тонна (т) и тесла (Т). Единственным исключением является то, что для литров допустимо использовать L, поскольку букву «l» часто путают с цифрой «1»!

Словарь

амперметр : прибор для измерения электрического тока в цепи; единица измерения — амперы или амперы (А).
контур : Путь для прохождения электрического тока.
проводник : Вещество, состоящее из атомов, которые свободно удерживают электроны, что позволяет им легче проходить через него.
электрический ток : непрерывный поток электрического заряда, перемещающийся из одного места в другое по пути; требуется для работы всех электрических устройств; измеряется в амперах или амперах (A).
электрохимическая реакция : реакция, которая чаще всего включает перенос электронов между двумя веществами, вызванный или сопровождаемый электрическим током.
электрод : проводник, по которому ток входит или выходит из объекта или вещества.
электрон : субатомная частица с отрицательным электрическим зарядом.
изолятор : Вещество, состоящее из атомов, которые очень прочно удерживают электроны, что не позволяет электронам легко проходить сквозь них.
параллельная цепь : Тип цепи, которая позволяет току течь по параллельным путям. Электрический ток распределяется между разными путями.Если лампочки подключены в параллельную цепь, и одна из лампочек удалена, ток все равно будет течь, чтобы зажечь другие лампочки в цепи.
полупроводник : Вещество, состоящее из атомов, которые удерживают электроны с силой между проводником и изолятором.
последовательная цепь : Схема, в которой все компоненты соединены по единому пути, так что один и тот же ток течет через все компоненты. Если вынуть одну из лампочек, цепь разорвется, и ни одна из других лампочек не будет работать.
напряжение : разность потенциалов между двумя точками в цепи, например положительным и отрицательным полюсами батареи. Его часто называют «толчком» или «силой» электричества. Возможно наличие напряжения без тока (например, если цепь неполная и электроны не могут течь), но невозможно иметь ток без напряжения. Он измеряется в вольтах (В).
вольтметр : прибор, используемый для измерения разности электрических потенциалов между двумя точками в цепи.

Прочие ресурсы

г. до н.э. Hydro | Power Smart для школ

г. до н.э. Hydro | Изучение простых схем

г. до н.э. Hydro | Изучение последовательных и параллельных цепей

г. до н.э. Hydro | Электробезопасность

Как работает материал | Как работают светодиоды

Для покупки елочных мини-лампочек: Home Depot, Canadian Tire

Для приобретения небольших учебных лампочек (номиналом не более 2 вольт каждая): Boreal Science

Изучите схемы с помощью онлайн-курсов и уроков

Что такое схемы?

Электрические цепи питают все в нашей жизни от компьютеров до светильников в вашем доме.Для проектирования безопасных и эффективных схем требуется знание того, как работают электрические токи, чтобы наши электронные устройства работали без сбоев. Цепи предназначены для использования опасной энергии энергии таким образом, чтобы мы могли доставлять эту энергию в наши дома и на работу, не создавая значительного риска. Если вы собираетесь построить новое здание или привести дом в действие, кто-то должен понимать, как работают эти схемы. Печатные платы питают даже самые маленькие детали наших устройств. Наше понимание электронной схемы позволило нам создавать более быстрые, компактные и эффективные вычислительные устройства, которым не видно конца.

Узнайте о схемах

Электротехника — это развивающаяся дисциплина как в технической, так и в классической области. Создание сложных схем позволяет информатике продвигать компьютерное оборудование до того, что мы можем использовать для наших потребностей в квантовых вычислениях. Эти схемы являются жизненно важной частью того, что движет нашей жизнью от микро до макро, поэтому узнайте немного больше обо всем этом с помощью правильных курсов и сертификатов.

Курсы схемотехники и сертификаты

EdX.org сотрудничает с ведущими учреждениями в этой области, чтобы предложить вам курсы по схемотехнике. Вы можете узнать об основах схемотехники с серией MIT по схемам. Вы изучите основы схем, включая протекание тока и последовательную цепь, а также такие концепции, как закон Ома. EPFL также предлагает серию курсов по схемотехнике с Electronique. Он также познакомит вас с основами электрических токов. Вся серия X от Массачусетского технологического института по схемам дает вам полный перечень электрических цепей. Вы разберетесь с источниками питания и источниками напряжения.Как только вы поймете принципиальную схему, вы будете готовы начать свою карьеру.

Зажигайте карьеру, исследуя схемы

Идете ли вы по традиционному пути электротехники или изучаете компьютерную инженерию, правильные курсы могут помочь вам начать работу. Получите свое понимание анализа схем и схематических диаграмм на курсах с edX.org и лидерами в этой области. Вы можете изучать как технические, так и традиционные схемы, развивать навыки, которые привлекают работодателей и настраивают вас на захватывающую карьеру.Вы можете построить следующую большую вещь в области компьютеров или продолжить более традиционный путь, поделившись своим опытом в строительных проектах и ​​нормах безопасности. Вам будут предложены курсы, которые научат вас всему, что вам нужно вначале, и настроят вас на долгую и стабильную карьеру.

Исследователи использовали атомное движение графена для генерации электрического тока, который мог привести к созданию чипа для замены батарей. — ScienceDaily

Команда физиков из Университета Арканзаса успешно разработала схему, способную улавливать тепловое движение графена и преобразовывать его в электрический ток.

«Схема сбора энергии на основе графена может быть встроена в чип, чтобы обеспечить чистую, безграничную низковольтную мощность для небольших устройств или датчиков», — сказал Пол Тибадо, профессор физики и ведущий исследователь этого открытия.

Результаты, опубликованные в журнале Physical Review E , являются доказательством теории, разработанной физиками в Университете А три года назад, что автономный графен — единственный слой атомов углерода — колеблется и изгибается таким образом, что многообещающе для сбора энергии.

Идея получения энергии из графена является спорной, потому что она опровергает известное утверждение физика Ричарда Фейнмана о том, что тепловое движение атомов, известное как броуновское движение, не может работать. Команда Тибадо обнаружила, что при комнатной температуре тепловое движение графена на самом деле вызывает в цепи переменный ток (AC), что казалось невозможным.

В 1950-х годах физик Леон Бриллюэн опубликовал знаменательную статью, опровергающую идею о том, что добавление в схему одного диода, одностороннего электрического затвора, является решением для сбора энергии из броуновского движения.Зная это, группа Тибадо построила свою схему с двумя диодами для преобразования переменного тока в постоянный (DC). Когда диоды расположены напротив друг друга, позволяя току течь в обе стороны, они обеспечивают отдельные пути через схему, создавая пульсирующий постоянный ток, который выполняет работу на нагрузочном резисторе.

Кроме того, они обнаружили, что их конструкция увеличила количество передаваемой мощности. «Мы также обнаружили, что поведение диодов при включении-выключении и переключении на самом деле усиливает подаваемую мощность, а не снижает ее, как считалось ранее», — сказал Тибадо.«Скорость изменения сопротивления, обеспечиваемого диодами, добавляет дополнительный фактор к мощности».

Команда использовала относительно новую область физики, чтобы доказать, что диоды увеличивают мощность схемы. «В доказательстве этого увеличения мощности мы опирались на зарождающуюся область стохастической термодинамики и расширили знаменитую теорию Найквиста почти столетней давности», — сказал соавтор Прадип Кумар, доцент физики и соавтор.

Согласно Кумару, графен и схема имеют симбиотические отношения.Хотя тепловая среда выполняет работу с нагрузочным резистором, графен и схема имеют одинаковую температуру, и тепло не течет между ними.

Это важное различие, сказал Тибадо, потому что разница температур между графеном и схемой в цепи, производящей энергию, противоречила бы второму закону термодинамики. «Это означает, что не нарушается второй закон термодинамики, и нет необходимости утверждать, что« демон Максвелла »разделяет горячие и холодные электроны», — сказал Тибадо.

Команда также обнаружила, что относительно медленное движение графена индуцирует ток в цепи на низких частотах, что важно с технологической точки зрения, поскольку электроника более эффективно работает на более низких частотах.

«Люди могут подумать, что ток, протекающий в резисторе, вызывает его нагрев, но броуновский ток — нет. Фактически, если бы ток не протекал, резистор остыл», — объяснил Тибадо. «Мы перенаправили ток в цепи и преобразовали его во что-то полезное.«

Следующая цель команды — определить, можно ли хранить постоянный ток в конденсаторе для последующего использования. Эта цель требует миниатюризации схемы и нанесения ее на кремниевую пластину или микросхему. Если бы миллионы этих крошечных схем могли быть построены на микросхеме размером 1 на 1 миллиметр, они могли бы служить заменой маломощной батареи.

Видео: https://www.youtube.com/watch?v=KiLTEjm8zLw&feature=emb_logo

Университет Арканзаса имеет несколько патентов в США, находящихся на рассмотрении.S. и международных рынках этой технологии и лицензировал ее для коммерческого применения через университетское подразделение Technology Ventures. Исследователи Сурендра Сингх, профессор физики университета; ; Хью Черчилль, доцент физики; Джефф Дикс, доцент кафедры инженерии, внес свой вклад в работу, которая финансировалась Фондом коммерциализации канцлера при поддержке Благотворительного фонда поддержки семьи Уолтонов.

Общие сведения об электричестве — Узнайте об электричестве, токе, напряжении и сопротивлении

Дом
> Поддержка>
Общие сведения об электричестве
Общие сведения об электричестве

Что
такое электричество?

Любая бытовая техника, которую мы используем
в нашей повседневной жизни, например, бытовая техника, оргтехника
и промышленное оборудование, почти все это требует электричества.Следовательно, мы должны понимать электричество.

Первый вопрос, который мы
узнает ответ: « откуда электричество
родом из?
«

Все дела состоят из
атомы. Затем задайте следующий вопрос: « Что такое атомы? ».

Атомы — это самая маленькая часть элемента.Они состоят
ядра и электронов, электроны окружают ядро. Элементы
идентифицируются по количеству электронов на орбите вокруг ядра
атомов и числом протонов в ядре.

Ядро состоит из протонов и нейтронов, а количество
протоны и нейтроны уравновешены. У нейтронов нет электрического заряда,
протоны имеют положительный заряд (+), а электроны — отрицательный
заряды (-).Положительный заряд протона равен отрицательному заряду
электрона.

Электроны связаны по своей орбите за счет притяжения протонов, но
электроны во внешней зоне могут покинуть свою орбиту за счет
некоторые внешние силы. Их называют свободными электронами,
которые движутся от одного атома к другому, образуются потоки электронов.
Это основа электричества. Материалы, позволяющие
свободно перемещающиеся электроны называются проводниками
а материалы, которые позволяют перемещаться небольшому количеству свободных электронов, называются
изоляторы .

Все вещества состоят из атомов, имеющих электрические заряды. Следовательно,
у них есть электрические заряды. Что касается сбалансированного
количество протонов и электронов, сила положительного заряда и
сила отрицательного заряда уравновешена. Это называется нейтральным состоянием.
атома. (Число протонов и электронов остается равным.)

« Статическое электричество »
представляет собой ситуацию, когда все вещи состоят из электрических
обвинения.Например, трение материала о другой
может вызвать статическое электричество. Свободные электроны одного материала
двигаться с силой, пока они не освободятся от своих орбит вокруг ядра
и перейти к другому. Электроны одного материала уменьшаются, он
представляет собой положительный заряд. В то же время электроны другого
увеличиваются, он имеет отрицательные заряды.

В общем, заряд
производство материи означает, что материя имеет электрические заряды.Он имеет положительный и отрицательный заряды, что выражается в
кулон.


Ток,
Напряжение и сопротивление


Что сейчас?

Электрическое явление вызвано потоком
свободные электроны от одного атома к другому.Характеристики
из действующей электроэнергии противоположны тем
статического электричества.

Провода состоят из проводников, например медных.
или алюминий. Атомы металла состоят из свободных электронов, которые
свободно переходить от одного атома к другому. Если добавлен электрон
в проводе свободный электрон притягивается к протону, чтобы оставаться нейтральным.
Вытеснение электронов с их орбит может вызвать недостаток электронов.Электроны, которые непрерывно движутся по проволоке, называются Electric.
Текущий
.


Для одножильных проводов
электрический ток относится к направленным
отрицательно-положительные электроны от одного атома к другому. Жидкость
проводники и газопроводы, электрический ток относится к электронам
а протоны текут в обратном направлении.

Ток — это поток электронов, но ток и электроны текут в
противоположное направление. Ток течет от положительного к отрицательному
и потоки электронов от отрицательного к положительному.

Ток определяется количеством электронов, проходящих через
сечение проводника за одну секунду. Ток измеряется
в Ампер , что сокращенно « Ампер ».Обозначение усилителя — буква « A ».

А ток в один ампер означает
что ток проходит через поперечное сечение двух проводников,
которые расположены параллельно на расстоянии 1 метра друг от друга с 2×10 -7 Ньютон
сила на метр возникает в каждом проводнике. Это также может означать сборы
одного кулона (или 6,24х10 18 электронов), проходящего через поперечное сечение
проводника за одну секунду.


Что такое напряжение?

Электрический ток — это поток электронов в проводнике. Сила
необходим для протекания тока через проводник, называется
напряжение и потенциал
другой срок напряжения. Например, у первого элемента больше
положительные заряды, поэтому он имеет более высокий потенциал. С другой стороны,
второй элемент имеет более отрицательные заряды, поэтому он
имеет более низкий потенциал.Разница между двумя точками называется
разность потенциалов .

Электродвижущая сила
означает силу, которая заставляет ток непрерывно течь через
дирижер. Эта сила может создаваться генератором энергии,
аккумулятор, аккумулятор фонарика и топливный элемент и т. д.

Вольт, сокращенно « В », это единица измерения
измерения, используемые взаимозаменяемо для напряжения, потенциала,
и электродвижущая сила.Один вольт означает силу, которая заставляет
ток в один ампер проходит через сопротивление в один Ом.

Что такое сопротивление?
Электроны движутся через
проводник при протекании электрического тока. Все материалы мешают
протекание электрического тока до некоторой степени. Эта характеристика
называется сопротивлением .Сопротивление увеличивается
с увеличением длины или уменьшением поперечного сечения
материал.

Единица измерения сопротивления — Ом
и его символ — греческая буква омега ( Ом, ).
Сопротивление в один Ом означает, что проводник пропускает ток.
одного ампера на поток с напряжением один вольт.

Все материалы имеют различие в пропускании электронов.Материалы
которые позволяют свободно перемещаться большому количеству электронов, называются проводниками
такие как медь, серебро, алюминий, раствор хлористоводородной, серной
кислота и соленая вода. Напротив, материалы, пропускающие мало электронов
для протекания называются изоляторы типа пластик,
резина, стекло и сухая бумага. Другой тип материалов, полупроводники
имеют характеристики как проводников, так и изоляторов.Они
позволяют электронам двигаться, имея возможность контролировать поток
электронами и примерами являются углерод, кремний, германий и т. д.

Сопротивление проводника
зависит от следующих двух основных факторов:

1. Виды материалов
2. Температура материала

Как измерить ток
Прибор для измерения силы тока
называется амперметр или амперметр .

Шаги для измерения тока

Подключите небольшую лампочку к сухой батарее.Измерьте ток
который проходит через лампочку при подключении положительной клеммы
(+) амперметра к отрицательной клемме (-) сухого элемента (см.
рисунок)

Указания по технике безопасности при измерении силы тока;
1. Оценить ток, требующий измерения
затем выберите подходящий амперметр, так как каждый амперметр имеет разные
предел измерения тока.
2. Убедитесь, что соединение с плюсовой клеммой
(+) и отрицательная клемма (-) амперметра правильные.
3. Не подключайте клеммы амперметра напрямую
сушить клеммы ячеек. Так как это может повредить счетчик.


Как измерить напряжение

Прибор для измерения напряжения, разницы
Потенциальная или электродвижущая сила называется вольтметром .

Шаги для измерения напряжения
Подключите небольшую лампочку к сухому элементу. Вольтметр есть
подключен параллельно лампочке для измерения напряжения
поперек лампочки. Подключите положительную клемму (+)
вольтметр к плюсовой клемме (+) сухого элемента и подключите
отрицательная клемма (-) вольтметра к отрицательной клемме
(-) сухой ячейки (см. рисунок).
Указания по технике безопасности при измерении
Напряжение;
1. Оценить напряжение, требующее измерения
затем выберите подходящий вольтметр
, поскольку каждый вольтметр рассчитан на
предел измерения напряжения.
2. Убедитесь, что подключение положительной клеммы
(+) и отрицательная клемма (-) вольтметра правильные.


Как измерить сопротивление

Инструмент, используемый для измерения
Сопротивление называется тестером или мультиметром .Мультиметр или тестовый метр используется для изготовления различных электрических
измерения, такие как ток, напряжение и сопротивление. Он сочетает в себе
функции амперметра, вольтметра и омметра.

Шаги для измерения сопротивления
Поверните лицевую шкалу в положение для требуемого измерения,
сопротивления, затем коснитесь обоих выводов мультиметра (см.
рисунок 1) и отрегулируйте диапазон измерителя на 0 Ом.Трогать
оба вывода измерителя к сопротивлению и возьмите
чтение (см. рисунок 2).

Как работает электричество?

Электрический ток — это способность
делать работу.Электрический ток можно преобразовать в тепло, мощность
и магнетизм, чтобы назвать несколько.

Электрический ток классифицирован
по своим функциям и трем основным типам:

1.

Теплоэнергетика

2.

Электрохимия

3.

Магнетизм

1. Тепло и энергия используется для производства тепла и электроэнергии.

Например, нихромовая токоведущая проволока.
проволока имеет высокое сопротивление и выделяет тепло.Это применяется
быть составной частью электрических духовок, тостеров, электрических утюгов
лампочки и др.

Эксперимент проводится путем измерения
нагреть количество воды калориметром. Увеличьте напряжение на
провод вариаком и подключите амперметр и вольтметр для измерения
ток и напряжение.
Установите шкалу переменного тока, чтобы отрегулировать напряжение и текущее значение
нихромовая проволока и ток периодически пропускается и
измерить количество тепла от нихромовой проволоки.Есть какие-то указания
напряжения и тока. Если напряжение, ток и время увеличиваются,
количество тепла также увеличится. Они выражаются
отношение, как показано ниже.

Это называется Джоуля.
закон
. Количество тепла зависит от напряжения время тока
и интервал времени.По закону Ома V (напряжение) = I (ток)
x R (Сопротивление), следовательно,

Количество тепла зависит от
текущий квадрат, умноженный на сопротивление и интервал времени.

При пропускании тока через нихромовую проволоку в воде ток
превращается в тепло, и температура повышается. Работу выполняет
тепло, выделяемое в электрической цепи, которая называется Electric
мощность
.

Измеряется электрическая мощность
в ватт-часах (Втч), а количество тепла измеряется в калориях.
(Cal).

Работа выполняется за счет выделяемого тепла
в электрической цепи написано мощность, что означает
что номинальная работа выполняется в цепи, когда ток 1 А с
Применяется 1 вольт, а его единица измерения — ватт.

2. Электрохимия

Например, когда ток проходит через хлорид натрия
(NaCl), химическая реакция, называемая электролизом.
имеет место. Применяется для производства электролиза, цинкования.
и аккумулятор и т. д.

Эксперимент проводится путем пропитывания двух платиновых (Pt) пластин.
в расплаве соли. Подключите батареи к двум платиновым пластинам,
ток проходит через расплав соли и производит хлор
пузыри вокруг положительной пластины (+) и пузырьки водорода
вокруг отрицательной пластины (-), поскольку хлорид натрия составляет
натрия (Na) и хлорида (Cl).Когда хлорид натрия
тает в воде, элементы разделяются. Натрий имеет
положительные заряды (+), а у хлора отрицательные заряды
(-) и эти заряды называются ионами .
Расплав соли имеет оба положительных заряда, которые называются анодами , ,
а отрицательные заряды называются катодами .
Состояние разделенных элементов называется ионизацией , .Если соль растапливается водой, в растворе имеются ионы,
называется раствор электролита . И если текущий
проходит через раствор электролита, химическая реакция
происходит электролиз.

3. Магнетизм

Примером данной электромонтажной работы является токоведущий
проволока, возникают магнитные линии потока.Это применяется для производства
электродвигатели, электрические трансформаторы и магнитофоны,
пр.

Понимание смысла
магнетизма:
Что такое магнетизм?

Составная формула магнита: Fe 3 O 4 .
Все магниты обладают двумя характеристиками. Во-первых, они привлекают
и держи железо.Вторичный, если свободно двигаться, как компас
игла, они займут положение север-юг. Любые материалы
Имеют такие характеристики, они называются магнитом .
Характеристики магнита:
Каждый магнит имеет два полюса, один северный полюс и
один южный полюс.
Противоположные полюса притягиваются друг к другу, в то время как
полюса отталкивают друг друга.

Электричество и магнитное поле

Когда магнитная стрелка находится рядом с электрическим проводом, который
ток пропускается, магнитная стрелка включает
направление тока (см. рисунок 1 и 2).Следовательно,
электрический ток также создает связанный магнитный
силу или говорят, что электричество способно производить
магнитное поле.
Когда магнитная игла помещена в проволочную катушку с одной петлей
(см. рисунок), и ток проходит через катушку с проволокой, магнитный
игла поворачивается в направлении, показанном на рисунке выше.А направления магнитных линий потока показаны
стрелки.
Когда магнитная игла помещена в проволочную катушку с множеством петель
как показано на правом рисунке, ток проходит через
катушка. Направление магнитных линий магнитных параллелей
катушка проволоки. Характеристики магнитных линий потока
как характеристики магнита, но без магнитного полюса.
Когда катушка с токоведущим проводом помещается рядом с железным стержнем,
железный стержень немного сдвинется (см. рисунок 1). Если сердечник размещен
в катушке из проволоки железный стержень сильно притягивается (см.
фигура 2). Поскольку сердечник — это мягкое железо, которое проводит магнитные
силовые линии, когда ток проходит через проволочную катушку
вокруг сердечника сердечник намагничивается с высокой мощностью
что называется электромагнитов .Эта функция
широко применяется в промышленности.

Электрические цепи

Эта основная идея исследована через:

Противопоставление взглядов студентов и ученых

Ежедневный опыт студентов

Студенты имеют большой опыт использования бытовой техники, в работе которой используются электрические цепи (фонарики, мобильные телефоны, плееры iPod).Скорее всего, у них появилось ощущение, что вам нужно включить аккумулятор или выключатель питания, чтобы все «работало», и что батареи могут «разрядиться». Они склонны думать об электрических цепях как о том, что они называют «током», «энергией», «электричеством» или «напряжением», причем все эти названия они часто используют как синонимы. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, вероятно, увидят в электрических цепях «поток» и что-то «хранимое», «израсходованное» или и то, и другое.Некоторые повседневные выражения, например о «зарядке батарей», также могут быть источником концептуальной путаницы для учащихся.

В частности, ученики часто считают, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

В частности, студенты часто видят, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, например свет. или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Исследователи описали их как:

Четыре модели простых схем
  • «униполярная модель» — точка зрения, согласно которой на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
  • «модель сталкивающихся токов». — вид, согласно которому ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
  • «модель потребляемого тока» — представление о том, что ток «расходуется» по мере «обхода» цепи, поэтому ток, «текущий к» лампочке, больше, чем ток, «утекающий» от нее обратно к лампочке. аккумулятор.
  • «научная модель» — точка зрения, согласно которой ток одинаков в обоих проводах.

Ежедневный опыт учащихся с электрическими цепями часто приводит к путанице в мышлении. Учащиеся, которые знают, что вы можете получить удар электрическим током, если дотронетесь до клемм пустой розетки домашнего освещения, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются ли они ее или нет. (Точно так же они могут полагать, что есть ток в любых проводах, подключенных к батарее или розетке, независимо от того, замкнут ли переключатель.)

Некоторые студенты думают, что пластиковая изоляция проводов, используемых в электрических цепях, содержит и направляет электрический ток так же, как водопроводные трубы удерживают и регулируют поток воды.

Исследования: Осборн (1980), Осборн и Фрейберг (1985), Шипстоун (1985), Шипстоун и Ганстон (1985), Уайт и Ганстон (1980)

Научная точка зрения

Термин «электричество» (например, «химия») ) относится к области науки.

Модели играют важную роль, помогая нам понять то, что мы не можем видеть, и поэтому они особенно полезны при попытке разобраться в электрических цепях.Модели ценятся как за их объяснительную способность, так и за их способность к прогнозированию. Однако у моделей также есть ограничения.

Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см.
Макроскопические свойства в сравнении с микроскопическими). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, изоляторах, таких как керамика, заряженные частицы перемещать гораздо труднее.

В научной модели электрический ток — это общее движение заряженных частиц в одном направлении. Причина этого движения — источник энергии, такой как батарея, который выталкивает заряженные частицы. Заряженные частицы могут перемещаться только при наличии полного проводящего пути (называемого «контуром» или «петлей») от одного вывода батареи к другому.

Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводящих проводов, соединяющих две клеммы батареи с двумя концами лампочки.В научной модели такой простой схемы движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, являются электронами.

Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от отрицательной клеммы и притягивает их к положительной клемме (см.
Электростатика — бесконтактная сила). Любой отдельный электрон перемещается только на небольшое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Разобраться в напряжении»).Хотя фактическое направление движения электронов — от отрицательного к положительному полюсу батареи, по историческим причинам обычно описывают направление тока как от положительного к отрицательному полюсу (так называемый « обычный ток »). ‘).

Энергия батареи хранится в виде химической энергии (см. Главную идею преобразования энергии). Когда он подключен к полной цепи, электроны перемещаются, и энергия передается от батареи к компонентам цепи.Большая часть энергии передается световому шару (или другому пользователю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). В соединительных проводах очень небольшое количество преобразуется в тепло.

Напряжение батареи говорит нам, сколько энергии она передает компонентам схемы. Это также говорит нам кое-что о том, насколько сильно батарея подталкивает электроны в цепи: чем больше напряжение, тем больше толчок (см. Идею фокусировки
Использование энергии).

Критические идеи обучения

  • Электрический ток — это общее движение заряженных частиц в одном направлении.
  • Для получения электрического тока необходима непрерывная цепь от одного вывода батареи к другому.
  • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
  • В большинстве схем движущиеся заряженные частицы представляют собой отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах схемы.
  • Батарея выталкивает электроны по цепи.

Исследование: Loughran, Berry & Mulhall (2006)

Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

Язык, на котором говорят учителя, очень важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «текущем» токе вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» — это свойство веществ, например масса, лучше называть «заряженные частицы», чем «заряды».

Идея фокуса
Введение в научный язык дает дополнительную информацию о развитии научного языка со студентами.

Использование моделей, метафор и аналогий жизненно важно для развития понимания учащимися электрических цепей, потому что для объяснения того, что мы наблюдаем в цепи (например, зажигание лампочки), необходимо использовать научные идеи о вещах, которые мы не можем видеть, например об энергии. и электроны. Поскольку все модели / метафоры / аналогии имеют свои ограничения, важно использовать их множество.Не менее важно четко понимать сходства и различия между любой используемой моделью / метафорой / аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) состоит в том, что они подразумевают, что любой заданный электрон перемещается по цепи.

Изучите взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в
Карты развития концепции — Электричество и магнетизм и модели

Вот некоторые полезные модели и аналогии:

  • аналогия с велосипедной цепью — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи.Движение велосипедной цепи аналогично движению тока в замкнутой цепи. Движущаяся цепь передает энергию от педали (то есть «аккумулятор») к заднему колесу (то есть «компоненты схемы»), где энергия преобразуется. Эта модель имеет лишь ограниченную полезность и требует от учащегося осознать, что заднее колесо является компонентом, выполняющим преобразование энергии.
  • модель мармелада — это помогает развить идею о том, что движение электронов в цепи сопровождается передачей энергии.Студенты играют роль «электронов» в цепи. Каждый из них собирает фиксированное количество мармеладов, представляющих энергию, когда они проходят через «батарею», и отдают эту «энергию», когда достигают / проходят через «лампочку». Эти студенческие «электроны» затем возвращаются в «батарею» за дополнительной «энергией», которая включает в себя получение большего количества мармеладов.

Еще одно описание этого вида деятельности представлено в виньетке PEEL.
Ролевая игра с мармеладом. Эта модель может быть очень мощной, но важным ограничением является представление энергии как субстанции, а не как изобретенной человеческой конструкции.

  • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарея» и тянет веревку так, чтобы она скользила через руки других учеников, «компоненты схемы». Студенты чувствуют, как их пальцы нагреваются по мере того, как энергия преобразуется, когда веревка тянется студенческой батареей

Для получения дополнительной информации о развитии идей об энергии см. Фокусную идею
Использование энергии.

  • модель водяного контура — это часто используется в учебниках, и на первый взгляд кажется, что это модель, которую студенты могут легко понять; однако важно, чтобы учителя знали о его ограничениях.

В этой модели насос представляет батарею, турбину — лампочку, а водопроводные трубы — соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут, опираясь на свой повседневный опыт, сделать неправильный вывод, например, что электрический ток может вытекать из проводов контура таким же образом, как и вода может вытечь из труб.

Исследование: Лофран, Берри и Малхолл (2006)

Преподавательская деятельность

Открытое обсуждение через общий опыт

Упражнение POE (прогнозировать-наблюдать-объяснять) — полезный способ начать обсуждение. Дайте ученикам батарейку, лампочку фонарика (или другую лампочку с нитью накала) и соединительный провод. Попросите их угадать, как следует подключить цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте патрон лампы. Это должно спровоцировать обсуждение необходимости создания полного контура для тока и пути тока в лампочке.Это задание можно расширить, поощряя студентов использовать другие материалы вместо проводов.

Бросить вызов некоторым существующим идеям

Ряд POE (Прогноз-Наблюдение-Объяснение) можно построить, изменив элементы существующей схемы и попросив учащихся сделать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

Разъяснение и объединение идей для / путем общения с другими

Попросите учащихся изучить модели и аналогии для электрических цепей, представленных выше.Студенты должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует поощрять к выявлению ограничений моделей.

Сосредоточьте внимание студентов на недооцененной детали

Попросите студентов изучить работу фонаря и нарисовать картинку, чтобы показать путь тока, когда выключатель замкнут.

Добавить комментарий

Ваш адрес email не будет опубликован.