Разное

Характеристики пенопласта: Такой страницы не существует • ООО «Стройтеплокомплект» (г. Набережные Челны)

Содержание

Пенопласт характеристики | ПСБ-С | Технические характеристики

Один из самых популярных сегодня строительных материалов — это пенопласт. Характеристики наиболее полно отражают рабочие возможности пенопласта и соответственно очерчивают диапазон его применения. Очевидно, что все свойства пенопласта проистекают из его химического состава. Прессованный пенопласт на 98% состоит из воздуха. Материал получают путём спекания полистирольных гранул и наполнения их безвредным конденсатом природного газа пентана.


В строительной отрасли негорючий пенопласт востребован прежде всего за универсальность применения и теплопроводность. В общем самыми полезными качествами пенопласта являются:

  • низкая теплопроводность
  • паропроницаемость пенопласта
  • водостойкость
  • биологическая индифферентность
  • простота установки
  • стабильные размеры
  • длительный срок службы
  • безвредность
  • низкая цена.

Теплопроводность пенопласта

Материал пенопласт — отличная теплоизоляция, основной характеристикой которой является коэффициент теплопроводности. Низкий показатель соответствует высокой теплоизоляции и соответственно отличной теплозащите. Усреднённый коэффициент теплопроводности пенопласта равен 0,035-0, 04 Вт/м*К. По данным производителей США пенопласт толщиной 120 мм по теплоизоляции может сравниться с:

  • шлаковой ватой толщ. 180 мм
  • деревянным бревном диам. 450 мм
  • керамзитобетоном толщ. 900 мм
  • кирпичной стеной толщ. 2100 мм
  • железобетонной стеной толщ. 4200 мм.

Теплопроводность пенопласта действительно очень мала, и действующие российские строительные нормы, в принципе, подтверждают правильность приведённых данных. Так, по нашим достаточно жёстким нормативам, чтобы обеспечить зданию достаточную теплозащиту, толщина пенопласта в зависимости от климатической зоны и назначения постройки должна варьироваться от 10 до 20 см.

Плотность пенопласта

Плиты пенопласта в зависимости от плотности делятся на следующие марки:

  • 15 — плотность пенопласта 10-15 кг/куб. м;
  • 25 — 15-25 кг/куб. м;
  • 25Ф — 16,5-25 кг/куб. м;
  • 35 — 25-35 кг/куб. м;
  • 50 — 35-50 кг/куб. м.

Разберёмся, влияет ли плотность на теплопроводность? Величина коэффициента теплопроводности тем меньше, чем больше воздуха в закрытых гранулах. Поэтому теплоизоляция совершенно не зависит от значений плотности. Плотность влияет только на прочность материала, отсюда и такая разница в областях, в которых применяют материал. Цена также в большой степени зависит от плотности. Подробнее о стоимости читайте по ссылке Пенополистирол цена.

Температура плавления пенопласта

Температура плавления пенопласта составляет 270оС. Для снижения класса пожароопасности пенопласта при производстве в его состав добавляют антипирены, значительно затрудняющие горение. При этом плотный пенопласт уже относится к классу горючести Г1 и называется ПСБ-С или Пенополистирол Суспензионный Беспрессовый Самозатухающий. Согласно ГОСТу в среднем пенопласт не должен гореть дольше 4 секунд, а улучшенный фасадный тип ПСБ-С-25Ф — не дольше 1 секунды.

Размеры пенопласта

Если вы хотите точно рассчитать количество необходимого материала перед тем, как приобрести пенопласт, размеры листа имеют принципиальное значение. Существуют нормативные габариты, но также по согласованию могут выдать разрешение на выпуск утеплителя, не соответствующего стандарту. По ГОСТу №15588-86 размеры пенопласта должны находиться в пределах:

  • толщина — от 20 до 500 мм при шаге 10 мм;
  • длина — от 900 до 5000 мм при шаге 50 мм;
  • ширина — от 500 до 1300 мм при шаге 50 мм.

Правильный подбор толщины плит определяется теплопередачей ограждающих конструкций, толщиной и материалом стен. К примеру, на коттедж, построенный в Санкт-Петербурге из кирпича пустотелого размером 250х120х88 мм, необходимо покупать пенопласт марки 25 толщиной 8 см. Узнать во сколько обойдётся теплоизоляция М25 можно в разделе Пенопласт цена.
Понравился материал статьи? Расскажите о нём:

Пенопласт: технические характеристики

Высокие технические характеристики пенопласта обеспечивают ему широкую сферу применения. Особой популярностью материал пользуется у строителей, отлично справляясь с функцией теплоизоляции помещений. Толщина и плотность материала напрямую влияют на его свойства.

Структура и основные параметры пенопласта

Состав ячеистой структуры пенопласта чрезвычайно прост – материал привычного белого цвета содержит 2% из полистирола, остальные 98% занимает воздух. Технология изготовления основана на вспенивании полистирольных гранул с последующей обработкой микроскопических элементов газообразователем. Многократное повторение процедуры обеспечивает стройматериалу значительное уменьшение веса и плотности.

Вспененная масса на следующем этапе подвергается процедуре высушивания, в результате чего остаточная влага испаряется. Процесс проходит в сушильных емкостях на открытом воздухе, после этого пенопласт приобретает привычную для потребителя структуру. Размеры гранул варьируются в пределах 0,5-1,5 мм, толщина стенок не превышает 0,001 мм.

Готовые гранулы прессуют для придания им формы плит. Чтобы получить требуемые параметры, блоки обрабатывают паром и нарезают специальным инструментом. В зависимости от заказа, размеры пенопласта могут быть стандартной и нестандартной формы. Обычно в технических характеристиках материала указана толщина от 20 до 1000 мм, при этом плиты могут иметь следующие размеры:

  • 500х500 мм;
  • 500х1000 мм;
  • 600х1200 мм;
  • 1000х1000 мм;
  • 1000х2000 мм.

Многообразие форм выпуска плит пенополистирола и его технические характеристики, среди которых особо ценятся теплоизоляционные свойства, делают его востребованным стройматериалом при утеплении помещений с различной функциональной нагрузкой.

Свойства и характеристики материала

Пенопласт выдерживает колебания температур от -50 до +75оС без изменений технических характеристик. Детально ознакомиться с техническими характеристиками пенопласта поможет подробное описание его свойств:

  • Теплопроводность. Особая технология производства обеспечивает плитам пенопласта высокие теплоизоляционные свойства. Ячейки в форме замкнутых многогранников, размер которых не превышает 0,5 мм, препятствуют проникновению холодного воздуха и значительно снижают теплообмен. При повышении плотности материала данный показатель изменяется.
  • Звукоизоляция и защита от ветра. Стены помещения, в отделке которых использованы плиты пенопласта, надежно защищены от ветра. Среди технических характеристик внимания заслуживает высокая степень звукоизоляции, которая также обеспечивается благодаря ячеистой структуре материала.

  • Влагостойкость. Пенополистирол ценится строителями за низкую гигроскопичность относительно других материалов. Вода не способна проникнуть сквозь стенки ячеек, а только просачивается по каналам.  
  • Долговечность и прочность. Пенопласт сохраняет первоначальные технические характеристики на протяжении длительного времени. Плиты способны выдержать значительное давление без деформации и разрушения. Ярким свидетельством может служить применение пенопласта при обустрйостве взлетно-посадочных полос. Толщина плиты пенополистирола напрямую влияет на степень прочности материала, имеет значение и правильность укладки.

Внимательного изучения заслуживает устойчивость пенопласта перед агрессивной средой. Показатели устойчивости плит пенополистирола напрямую зависят от состава воздействующего вещества. Плиты пенопласта проявляют устойчивость к растворам:

  • цемента;
  • гипса;
  • битума;
  • кислотам, щелочам и соляным растворам;
  • морской воды;
  • не восприимчивы к воздействию водорастворимых и акриловых красок.

Длительное соприкосновение с веществами, в составе которых присутствуют масла растительного и животного происхождения, дизтопливо и бензин может негативно отразиться на технических характеристиках пенопласта.

Когда плиты пенополистирола используются при строительстве объектов, следует избегать контактов с составами, которые агрессивно влияют на структуру материала. Среди них:

  • скипидар;
  • ацетон;
  • органические растворители красок;
  • эфир с уксусно-этиловой основой;
  • всевозможные насыщенные углеводороды и вещества, полученные путем нефтепереработки.

Сюда относятся мазут, солярка, керосин и бензин. Контакт с вышеперечисленными компонентами приводит к нарушению структуры и потере качеств, указанных в технической характеристике, также может спровоцировать полное растворение.

Внимание! Искусственное происхождение пенопласта выступает неблагоприятной средой для появления и развития микроорганизмов. Но при значительном загрязнении поверхности пенополистирольных плит размножение микроорганизмов становится возможным.

Среди положительных качеств плит пенопласта, которые не отражаются в технической характеристике, отмечается удобство использования и простой монтаж. Малый вес обеспечивает легкость в проведении работ, структура не создает сложностей при необходимости нарезки и последующего монтажа.

Пенополистирол входит в категорию экологически чистых стройматериалов, в процессе эксплуатации он не выделяет ядовитых веществ. При работе с ним не требуется применение средств защиты индивидуального характера. Многочисленные сводные таблицы технических характеристик не отражают многочисленные положительные качества стройматериала. Он не образует пыли при нарезке, ценится за отсутствие запаха, не раздражает слизистые и кожные покровы, не ядовит.

Пожаробезопасность – важная качественная характеристика пенопласта. При выборе строительного материала, этому показателю уделяют особое внимание. Качественные изделия должны проявлять устойчивость к открытому огню. Плиты пенополистирола относятся к 3-4 классу горючести. Такой материал не поддерживает процесс горения. Температура, при которой он способен вспыхнуть, в 2 раза превышает аналогичный показатель по древесине (+491оС по сравнению с +230оС).

Если в составе пенополистирола присутствует антипирен, класс горючести такого материала снижается до Г2-Г1. В маркировке эта особенность выражена буквой С. Воспламенение плиты пенопласта может произойти в результате длительного контакта с открытым огнем. Прекращение воздействия огнем приводит к его затуханию на поверхности пенополистирольной плиты в течение 4 секунд.

Отдельные технические характеристики плит пенопласта изложены в сводной таблице:

Формы выпуска

Плотность материала выступает определяющим фактором при разделении пенопласта на марки. Она напрямую влияет на показатели прочности и теплопроводности. Технические характеристики отдельных марок помогут определиться со сферой использования материала:

  • Маркировка ПСБ-С 15 принадлежит плитам с самой малой плотностью, которая составляет 15 кг на м3. Такие плиты пенополистирола чрезвычайно легкие, применяются для утепления бытовок и строительных вагончиков, т.е. в местах временного пребывания людей.
  • Большей популярностью пользуется марка ПСБ-С 25, где плотность, соответственно, составляет 25 кг/м3. Сфера применения – утепление фасадов зданий, полов, в качестве теплоизоляции кровли.
  • Пенопласт ПСБ-С 35 обладает плотностью 35 кг на кубический метр. Высокие технические характеристики пенополистирола с маркировкой 35 востребованы в процессе производства ж/б конструкций и сэндвич панелей.
  • Чрезвычайно плотной структурой обладает пенопласт 50. За счет этого плиты активно используется при обустройстве полового покрытия в холодильных складах, строительстве дорог.

Анализируя таблицы с техническими характеристиками, можно сделать вывод о целесообразности приобретения плит пенополистирола с целью утепления стен плотностью 25 и 35 кг/м3. Причем для внутреннего утепления будет достаточно плотности 25, а для отделки снаружи лучше воспользоваться пенопластом 35.

При выборе материала для утепления стен, имеет значение толщина пенопласта. Точных рекомендаций дать невозможно. Выбор зависит от ряда сопутствующих факторов, куда входят:

  • Климатические условия региона, где расположена постройка.
  • Материал, используемый для возведения стен. Зачастую стены строения состоят из нескольких слоев, различных по своим техническим характеристикам. Поэтому требуется определить суммарный показатель.
  • Плотность плиты пенополистирола, которая определяется маркировкой.

Обычно, по совокупности факторов, при необходимости утепления внутренних стен применяют пенопласт 50 мм, использование пенопласта 100 мм больше востребовано при наружных работах.

Достоинства и недостатки

Рассматривая технические характеристики пенопласта, в заключение стоит подвести итоги о положительных качествах материала и отдельных недостатках.

Итак, преимущества использования в качестве утепления:

  • Доступная стоимость.
  • Низкая теплопроводность обеспечивает пенопласту высокие характеристики теплоизоляции.
  • Легкий вес и простой монтаж.
  • Низкая гигроскопичность.
  • Экологическая безопасность.

Недостатков немного, но они присутствуют:

  • Горючесть. При выборе отдайте предпочтение усовершенствованной продукции, в составе которой присутствуют антипирены. Они снижают температуру воспламенения и обеспечивают самозатухание после прекращения воздействия открытым огнем.
  • Пенопласт разрушается под воздействием УФ лучей и отдельных химических составов, поэтому требует защиты.

Применение плит пенополистирола снаружи без дополнительной отделки нецелесообразно.

По своим техническим характеристикам пенопласт не уступает другим материалам с теплоизоляционными свойствами, а во многом даже превосходит их. Для получения качественной теплоизоляции стен важно правильно определить необходимую плотность материала и толщину плит. Вычисления ведут с учетом климатических особенностей региона и характеристик стен строения.

Пенопласты — характеристики свойства и виды пенопласта | ПластЭксперт

Пенопласт. Основные понятия


Пенопласт – это разновидность композитного материала низкой плотности или пеноматериала, одним из компонентов которого является полимер, вторым компонентом – газ. Другими словами, пенопласт является наполненной газом пластической массой. Как правило, пенопласты, в отличие от поропластов, имеют строение в виде изолированных ячеек или отвердевших пен. Ячейки состоят из замкнутых полостей, которые не соединены между собой и в качестве разделителя имеют стенки полимерной матрицы. Отличие поропластов от пенопластов состоит в том, что первые обладают губчатой структурой (поры не изолированы). Система пор, связанных между собой, является главным признаком поропластов.


Отметим, что определение пенопластов и поропластов, данное выше, достаточно условно, т. к. во многих случаях в пенопласте значительное количество ячеек соединено между собой, а в поропласте может быть изолировано. На сто процентов можно говорить об изоляции лишь в том случае, если материал состоит из отдельных вспененных гранул, например популярный в строительстве пенопласт пенополистирол. Точнее будет называть пенопластом любой наполненный газом пластик, который был произведен вспениванием изначально вязко-текучей или жидкой композиции полимера с дальнейшим отверждением последней.


Производство вспененных пластмасс


Выпуск пенопластов в промышленных условиях заключается в том, что газ распределяется в полимере, который в данном случае является полуфабрикатом. Это может быть расплав, раствор, расплаве, дисперсия, жидкий олигомер и т.д. Либо в процессе производства газ не добавляется, а создаются условия для самостоятельного выделения необходимого объема газа в массе полимерного связующего. Это может происходить непосредственно в ходе синтеза или модификации исходного полимера, яркий пример такого материала – пенопласт ППУ (пенополиуретан).


Технологический процесс получения пенопластов использует разнообразные способы достижения эффекта вспенивания, их можно разделить на следующие виды:

  • нагнетание газа под давлением в полимерную систему;
  • добавление в полимерную систему химических агентов порофоров или газообразователей, которые при определенных условиях разлагаются с выделением газообразных соединений;
  • добавление веществ, которые выделяют газ в ходе химической реакции между собой или с другими компонентами системы;
  • перемешивание при помощи механических устройств в присутствии пенообразователей или так называемое «барботирование»;
  • введение в полимерную матрицу легко испаряющихся жидкостей, создающих газовую фазу при повышении температуры;
  • другие реже используемые операции.


Различные способы получения вспененной структуры позволяют варьировать свойства готовой продукции в зависимости от исходного состава системы и условий отверждения композиции. В частности, можно получить пенопласт более открытой или замкнутой структурой, разной плотности, различных размеров ячеек и т.п.


Производство пенопласта


Машины и оборудование для производства пенопластов делится на типы, которые зависят от метода получения конечного материала и технических характеристик начального полимера, предназначенного для вспенивания.


Виды пенопласта по методу производства. Экструдированный пенопласт, чаще всего встречается полиэтилен, производят из полимера вспениванием в цилиндре экструдера, либо в элементах формующей оснастки. Пенополистирол или ПСВ производится в виде бисерных гранул, содержащих легкокипящий пентан, которые затем для вспенивания обрабатываются горячим паром непосредственно в форме.


Уже упомянутый выше пенополиуретан получают и перерабатывают в изделия методом впрыска двухкомпонентной смеси на специальных заливочных машинах под давлением. Причем таким образом получают изделия и из мягкого (поролон) ППУ, и жесткого (изоляция труб, детали интерьера автомобиля), так называемого интегрального пенополиуретана. Компонентами для смеси являются полиол и изоцианат, реагирующие с выделением углекислого газа. Их химические особенности и соотношение при впрыске определяют свойства получаемых изделий. Смешение полиола и изоцианата из-за их высокой реакционной способности обычно происходит в головке высокого давления непосредственно перед впрыском в полость в формы.



Рис. 1 Мягкая мебель – основной рынок для эластичного ППУ (поролон).


Простейшие изделия из вспененных пластмасс можно получать и на стандартных машинах для переработки полимеров, например ТПА или экструзионных линиях. Для этого в состав композиции необходимо добавить специальные концентраты добавок веществ, разлагающихся в ходе техпроцесса, так называемых порофоров. Обычно при этом не достигается значительного вспенивания изделий, соответствующей экономии сырья и улучшения свойств готового продукта, однако на его поверхности могут появиться нежелательные следы выхода газа по полимерной массы – дефект «серебрения». Строго говоря, при этом методе получается слегка подвспененная монолитная деталь, а не пенопласт в классическом понимании.


Детали из поропластов можно также выпускать путем вымывания растворимого наполнителя из пластиковой заготовки. Другой редкий способ заключается в спекании порошкообразных пластмасс, причем он подходит и для других материалов, например некоторых металлов. Также пенопласт можно получать при конденсационном структурообразовании, возможного в растворах полимеров. Родственные пенопластам материалы получаются добавлением в полимерную матрицу полых наполнителей, заполненных газом, в том числе микрокапсул различной природы. Таким образом производят газонаполненные пластмассы.


Полимеры, пригодные для вспенивания, и вспениватели


Большинство известных полимеров вполне можно наполнять газами, получая пенопласт. При этом крупнотоннажные пенопласты промышленность производит в основном на основе полистирола (вспененный полистирол, ПСВ), полиэтилена (вспененный ПЭ), поливинилхлорида (пеноПВХ), полиуретанов (ППУ), полипропилена (вспененный ПП). Реже используются полиреактивные, как и ППУ, материал, например эпоксидные, карбамидные, фенольные смолы, а также кремнийорганические полимеры.


Главным образом, при вспенивании в промышленности применяются следующие газообразователи: имеющие в составе азот (азосоединения, нитросоединения, карбонат аммония и т.п.) и легкокипящие жидкости — изопентан, разновидности фреона, метиленхлорид.


Свойства изделий из пенопластов


Современная индустрия производит эластичные (мягкие) и жесткие (интегральные) пенопласты, имеющие ячейки размером 0,02—2 мм, максимум до 5 мм. Эти материалы обладают очень высокими теплоизоляционными и звукоизоляционными свойствами и очень низкой кажущейся плотностью (от 0,02 до 0,5 г/см2). Другие характеристики пенопластов, такие как механические и электрические свойства, газопроницаемость, водо- и химическая стойкость и т.п. зависят от химического состава и рецептуры изначальной полимерной системы и от метода производства и структуры изделия.


Детали из пенопласта, как правило, не нуждаются в дальнейшей постобработке. То есть количество отходов при производстве и эксплуатации таких изделий низкое. Этот факт вкупе с уже озвученными преимуществами делает пенопласт очень привлекательной для изготовителей изделий из пластиков.


Области применения пенопластовых изделий


Теплопроводность любых вспененных материалов очень низкая, что определяющих широкий спектр их применения в самых различных областях человеческой жизни.



Рис 2. Относительно новое применение пенопласта – одноразовые лотки для пищи.


Описываемые изделия широко применяются как утеплитель и звукоизоляционный материал в строительстве, теплоизоляции трубопроводов, в судостроении и самолётостроении, в машиностроении (изоляция холодильников и химических реакторов), автопроме и во многих других областях. Пенопласт применяют при производстве многослойных конструкций (сэндвич-панели), различных плавучих средств, изоляционных листов, амортизирующих прокладок. Широчайшую популярность завоевал вспененный полистирол в разнообразной таре и упаковки, в том числе для бытовой техники и электроники, а также в виде лотков для пищевых продуктов. Огромный объем производства эластичного пенополиуретана необходим для выпуска мягкой мебели, матрацев и зимней одежды. Срок эксплуатации таких изделий может достигать десятков лет.

Объявления о покупке и продаже оборудования можно посмотреть на         

Обсудить достоинства марок полимеров и их свойства можно на               

Зарегистрировать свою компанию в Каталоге предприятий

Какие у пенопласта физические, химические свойства и технические характеристики?

Какие свойства имеет пенопласт

Повсеместное использование пенопласта в строительстве, утеплении, при производстве и хранении различного вида продукции объясняется его доступностью. Лист пенополистирола стоит намного меньше, чем его современные конкуренты. Но дело не только в сэкономленных гривнах — пенопласт обладает набором качеств, которые позволяют ему быть незаменимым в некоторых областях применения.

Однако, часть свойств пенополистирола ограничивает возможности его применения или требует соблюдения правил эксплуатации. Рассмотрим физические и химические свойства пенопласта и определим, как и где его можно применять, а в каких случаях лучше предпочесть другой теплоизолятор.

Что такое пенопласт

Впервые пенопласт был создан в Германии в 1839 г. С тех пор он прочно вошел в мировую строительную и промышленную индустрию. В 1951 г. был изобретен беспрессовый пенополистирол (стиропор), который на сегодняшний день является самым востребованным на строительном рынке.

Пенополистирол — материал, состоящий из отдельных газонаполненных полистирольных ячеек. Он легкий, плавучий, демонстрирует высокие тепло-, звуко-, электроизоляционные характеристики. Его свойства зависят от степени вспенивания, строения ячеек, химической составляющей полимера.

Химическая формула пенопласта говорит об его экологической чистоте. Материал состоит из углерода и водорода([-СН2-С(С6Н5)Н-]n-).

Технология получения пенопласта

Изначальный размер гранул сырья предопределяют качество и сферу применения готового пенопласта. Наиболее плотные листы получаются из самых маленьких гранул. Добавление вторичного сырья также отражается на конечном продукте.

В зависимости от первоначального размера гранул во многом зависят прочностные качества конечного продукта. Чем меньше размер гранул, тем плотнее материал получится на выходе. При этом качество впрямую зависит и от добавок вторичного сырья. Сам процесс состоит из нескольких этапов.

Процесс изготовления пенопласта

  1. Многократное воздействие паром под высоким давлением на полистирол. В этот момент из сырья выходит фреон. Сырье увеличивается в объеме, в среднем, в 50 раз, получаются гранулы.
  2. Полученные шарики проходят этап кондиционирования в силосе при специальной температуре и интенсивной продувке воздухом.
  3. Из гранул в блок-форме прессуют блоки материала, которые потом охлаждают с помощью вентиляторов.
  4. Блоки кондиционируют и раскраивают на станках на листы нужной толщины и размеров.

Физико-механические свойства

В первые 24 часа пенопласт поглощает жидкость примерно в количестве 1-2% от объема материала. За эти сутки наполняются открытые на срезе ячейки. Затем объем водопоглощения замедляется и в течение 30 дней сходит на нет.

Пенопласт на 98% состоит из воздуха, который находится в замкнутых полистирольных ячейках. Воздух в ограниченном пространстве гранул остается в них и постоянно демонстрирует высокие теплоизоляционные показатели.

Теплопроводность материала при 200 С — 0,033-0,038 Вт/м*К, в зависимости от марки.

Пенопласт часто применяется для повышения звукоизоляции комнат, если уровень звука из соседних помещений не бьет рекорды, которые ставят болельщики при шумовой поддержке на трибунах. Подробнее о звукоизоляции пенопластом мы говорили в этой статье.

Пенопласты отличаются высокой механической прочностью при нагрузках короткой, средней длительности.

Пенопласт относят к относительно пожаробезопасным стройматериалам. Он не поддерживает горение, воспламеняется при температуре 3460 С при непосредственном контакте с огнем. Для самовозгорания материала требуется температура 4910 С.

При прекращении контакта с огнем, пенопласту достаточно 4 секунд, чтобы затухнуть самостоятельно.

При продолжительных температурных нагрузках свыше 100 градусов, пенопласт размягчается и деформируется. При этом он выдерживает краткосрочные воздействия температур выше этого показателя. Например, при склеивании горячим битумом.

Пенополистирол не создает благоприятных условий для развития микроорганизмов, устойчив к образованию плесени из-за сухой внутренней среды.

Средний срок службы пенопласта — не менее 50 лет.

Сводная таблица физико-механических свойств пенопласта











Средняя плотность

до 35 кг/м3

Теплопроводность

0,33-0,38 Вт/м*К

Прочность на сжатие

0,05-0,25 МПа

Сопротивление теплопередаче

от 2,564 м2К/Вт

Звукоизоляция (воздушный шум)

более 53 Дб

Время до самозатухания

не более 4 с

Сопротивление воздухопроницанию (плиты толщиной 50-100 мм)

79 м2*ч*Па/кг

Водопоглощение за сутки

до 2% от общего объема листа

Влажность

до 12%

Паропроницаемость

до 0,12 мг/м*ч*Па

Химические свойства материала

Пенопласт демонстрирует стойкость к воздействию большинства химических веществ. Но нужно помнить о возможных повреждениях при контакте с растворителями, красками и агрессивными веществами. Подробнее стойкость к химикатам представлена в таблице.











Вещество

Стойкость

Растворы соли, морская вода

+

Мыло, отбеливатели (гипохлорид, хлорная вода)

+

Разведенные кислоты

+

Соляная кислота (35%), азотная к-та (50%)

+

Серная к-та, муравьиная к-та и другие безводные кислоты

Нашатырный спирт

+

Органические растворители (ацетон, растворители лака, бензол и др. )

Дизтопливо, бензин

Спирты, парафиновые масла

+/-

(может не выдержать длительного воздействия)

Безопасность материала

Пенопласт, произведенный с соблюдением европейских стандартов, экологически безопасен. Материал может использоваться для производства упаковки для пищевых продуктов, так как соответствует требованиям министерства здравоохранения Украины.


Нецелевое использование пенопласта

Пенополистирол — материал с широким спектром возможностей. Но его поведение при эксплуатации зависит от условий применения. Нецелевое использование материала не может гарантировать сохранение пенопластом своих первоначальных свойств.

Так, например, при покраске необходимо использовать только водно-дисперсионные краски, чтобы сохранить целостность структуры пенополистирола. Распространенные виды краски на масляной основе имеют в составе растворитель, контакта с которым пенопласт не выдержит.

При утеплении пенопластом внутренних стен нужно понимать, что его воздухопроницаемость низкая. Поэтому необходимо устраивать системы принудительной вентиляции помещения.

В ассортименте производственной компании “ВIК БУД” есть различные виды пенопласта, произведенные по европейским стандартам. У нас можно заказать плиты различной плотности и размеров с оперативной адресной доставкой по городам Украины. Каждая гранула пенопласта бережет Ваше тепло и бюджет.

Характеристики и свойства пенопласта, особенности утеплителя

Характеристики пенопласта позволяют определить степень его эффективности, как утеплителя, при определенных условиях. Этот материал имеет свои плюсы и минусы, поэтому его используют выборочно. Но такие свойства пенопласта, как теплопроводность, длительный срок службы и сравнительно хорошая паропроницаемость делают его довольно популярным, несмотря на появление более новых аналогов.

Структура и сферы применения

Свои характеристики пенопласт приобретает благодаря особому строению. Это гранулированный материал, в основе которого полистирол. Он содержит до 98% воздуха, тогда как объем плотной структуры не превышает 2%. Применение сухого пара с целью обработки гранул обеспечивает основные свойства: низкую плотность пенопласта и малый вес.

Листы формуются после тщательной просушки основного материала. Такая технология производства придает и другие качества пенопласту: невысокий коэффициент теплопроводности, что делает его популярным утеплителем; низкая степень прочности листа. Последний из факторов может повлиять на срок службы изделия. Применяют утеплитель данного вида в разных областях: строительная отрасль; пищевая промышленность (упаковка), радиоэлектроника, судостроение.

Обзор технических характеристик

Существуют разные марки пенопласта, каждая из которых имеет собственный набор свойств и параметров. На основании этой информации следует делать выбор.

Показатель коэффициента теплопроводности

Замкнутые ячейки представляют структуру пенопласта, благодаря чему утеплитель данного вида приобретает способность задерживать тепло в помещении. Коэффициент теплопроводности составляет: от 0,033 до 0,037 Вт/(м*К).

За счет низкой теплопроводности утеплителя обеспечивается высокая степень энергосбережения.

Эффективным считается утеплитель, значение данного параметра которого составляет не более 0,05 Вт/(м*К). Существуют и более действенные материалы, однако, средние характеристики пенопласта позволяют успешно применять его до сих пор.

Звукоизоляционные качества, защита от ветра

Наилучшим для защиты от посторонних шумов является материал, который имеет следующие технические характеристики: низкую теплопроводность и одновременно с тем способность пропускать воздух. Под эти критерии подходит пористый пенопласт. Это означает, что утеплитель данного вида отлично справляется с задачей по защите объекта от шума.

Причем, чем значительнее толщина листа, тем лучше звукоизоляционные качества материала. Если нужно обеспечить защиту объекта от ветра, то пенопласт успешно решит и эту проблему, так как состоит из множества закрытых ячеек.

Влагопоглощение

Способность утеплителя данного вида поглощать воду довольно низкая, что позволяет считать его негигроскопичным. Показатель влагопоглощения при постоянном контакте с водой на протяжении суток соответствует 1%.

Материал равнодушен к воздействию влаги и практически ее не впитывает.

Это несколько больше, чем у пеноплекса (0,4%), но и меньше, чем у большинства некоторых других аналогов, например, минваты. Благодаря низкой гигроскопичности срок службы пенопласта значительно продлевается, так как снижается риск образования плесени или грибка.

Температурный режим

Рассматриваемый утеплитель не меняет своих свойств при существенном повышении температуры (до 90 градусов). Низкие значения также не оказывают пагубного влияния на материал данного вида, поэтому его задействуют, в частности, при теплоизоляции наружных стен. Но во время укладки с применением клеящего состава рекомендуется соблюдать температурный режим: не ниже +5 и не более +30 градусов.

Влияние внешних факторов

К таковым относят: перепады температур, ветровая нагрузка, дожди, снега и любой механический источник давления. Прочность листа пенопласта невысока под воздействием последнего из рассмотренных факторов.

Благодаря своим теплоизоляционным характеристикам пенопласт получил широкое распространение при утеплении стен, кровли, потолка, балконов.

Это обусловлено малым весом и крупноячеистой структурой. Причем толщина материала практически не меняет ситуацию. Если сравнить его с пеноплексом, данный вариант отличается высокими прочностными характеристиками.

Степень устойчивости к химическим веществам и микроорганизмам

При контакте с рядом веществ свойства пенопласта не меняются, к таковым относятся: соляные растворы, щелочь, кислота, гипс, известь, битум, цементный раствор, некоторые виды лакокрасочных материалов (на основе силиконов и водорастворимые составы). Нужно избегать контакта утеплителя на основе полистирола с такими веществами: растворители, ацетон, скипидар, бензин, керосин, мазут.

Учитывая низкую гигроскопичность и закрытую структуру материала, пенопласт не обеспечивает подходящие условия для размножения вредоносных микроорганизмов.

Пожаробезопасность

Утеплитель относится к быстровоспламеняющимся материалам (категория горючести Г3 и Г4), однако, время его горения при условии устранения источника возгорания не превышает 3 сек.

Если выбрали утеплитель пенопласт, знайте, он плохо противостоит горенью

Будет заблуждением считать такой материал полностью безопасным, но все же его часто используют, что обусловлено выделением меньшего количества энергии при горении, а также самопроизвольным затуханием.

Свойства

Габариты листа, в частности, его толщина, а также плотность являются одними из главных показателей, на основании которых делается выбор материала.

Основные характеристики и свойства утеплителя

Плотность

Данный параметр представляет собой соотношение веса к объему, соответственно, единицы измерения – кг/куб. м. Чем более высокой является плотность пенопласта, тем он будет тяжелее. А вес изделия – один из факторов, формирующих стоимость изделия. Соответственно, чем больше плотность и вес, тем дороже будет стоить утеплитель.

Пенопласт имеет 4 марки плотности: М15, М25, М35, М50. Выше марка — больше плотность, больше плотность — выше теплоизоляция.

Если рассматривать влияние данного параметра на показатель теплопроводности, то прямой связи не наблюдается. Основа пенопласта – воздухонаполненные закрытые ячейки. Повышение плотности может лишь незначительно изменить показатель теплопроводности (на десятые доли) из-за уплотнения гранул. В целом же общая структура материала остается неизменной, а значит, не меняется и его способность удерживать тепло.

Существуют разные марки утеплителя на основе полистирола: с обозначением 15, 25, 35 и 50. Значения соответствуют толщине листа. Дополнительно могут указываться некоторые буквы: А, Н, Ф, Р, Б, С, что определяет способ изготовления или специфические свойства.

Габариты

Стандартные размеры пенопласта:

  • 1,0х1,0 м;
  • 1,0х0,5 м;
  • 2,0х1,0 м.

Толщина утеплителя варьируется в пределах от 10 до 100 мм с определенным шагом: 10 мм; 20 мм; 30 мм; 40 мм; 50 мм и 100 мм. Чем больше значение данного параметра, тем дороже он обойдется. На прочностные характеристики толщина не влияет, если только не рассматривается материал с высокой плотностью.

Плюсы и минусы

Недостатков у листов полистирола немного: низкая прочность на изгиб; разрушение при контакте с некоторыми видами красок и агрессивных составов; недостаточно высокий показатель паропроницаемости, хоть и выше, чем у пеноплекса.

Главные плюсы:

  • Низкая цена;
  • Длительный срок службы;
  • Небольшой вес;
  • Незначительный уровень гигроскопичности;
  • Устойчивость к высокой и низкой температуре;
  • Несложный монтаж и простота обработки;
  • Устойчивость к образованию грибка;
  • Низкий коэффициент теплопроводности.

Плюсы и минусы пенопласта, сравнение с другими утеплителями

Все эти положительные качества обеспечивают технические характеристики утеплителя, а также его свойства. Срок службы рассматриваемого материала хоть и длительный, однако, ниже, чем у аналога – пеноплекса.

По некоторым характеристикам этот утеплитель превосходит другие аналоги, например, минвату. Но есть и существенные недостатки, в частности, неустойчивость к ряду составов, низкая прочность.

Оценка статьи:

Загрузка…

Поделиться с друзьями:

Основные свойства пенопласта как утеплителя

Проблему утепления частного дома или квартиры приходилось решать всегда, при этом эффективные способы возникли только после появления такого строительного материала, как пенопласт. Утепление потолка,пола и стен с его помощью позволяет в жилище сохранить тепло и при этом сэкономить средства.

Полистирольный пенопласт

Существует прессовый и беспрессовый пенопласт, их различить не слишком сложно, даже не являясь профессионалом. Если вы когда-либо разглядывали структуру материала, то, скорее всего, заметили, что он состоит из небольших шариков, которые между собой сцеплены, как соты в улье пчел.

Беспрессовый пенопласт можно увидеть в коробках с бытовой техникой, поскольку он активно применяется для упаковки.

По теплоизоляционным свойствам и внешнему виду прессовый практически не отличается от второго, его гранулы между собою сцепляются несколько прочнее, за счет чего он не крошится. При этом прессовый пенопласт в производстве сложнее, а значит, он обходится дороже, за счет чего получил меньшее распространение.

Технические характеристики пенопласта

Данный дышащий материал имеет малый удельный вес, влагу не накапливает, при этом гниению не подвержен. Его главный недостаток – это горючесть, хотя с помощью нанесения штукатурки жилище от огня можно обезопасить.

Характеристики пенопласта:

    биологическая и химическая устойчивость к воздействию морской воды, щелочи, соли, мыла, цемента, битума, извести, гипса;низкая теплопроводность;устойчивость к изменениям температур, за счет чего материал можно использовать в разных климатических условиях;он не является благоприятной средой для развития грибков, плесени и микроорганизмов;высокая паропроницаемость – благодаря ей происходит испарение влаги, которая накапливается в стенах;отличные звукоизолирующие свойства.

Основные свойства пенопласта как утеплителя

Пенополистирол в народе называют «пенопласт». Это слово произошло от названия финской компании, которая в СССР поставляла пенополистирол. Название фирмы трансформировалось со временем в наименование данного материала.

В нынешний момент пенопласт за рубежом и в России производят различные компании. Оборудование для его производства стоит дешево, при этом не требует для обслуживания и эксплуатации квалифицированной рабочей силы.

Теперь рассмотрим свойства пенопласта:

Это горючий материал. Если рассматривать недостатки пенопласта как утеплителя, то это свойство можно выделить как основное.

Это плохо влияет на использование пенопласта. В особенности это касается использования его в вентфасадах. В месте, в котором имеется к утеплителю свободный доступ воздуха, нельзя применять пенополистирол.Он легкий.

Данная характеристика пенопласта как утеплителя позволяет использовать его для обогрева различных легких конструкций. Пенопласт не увеличивает вес сооружений, что ставит его на 1-ое место среди утеплителей, когда необходимо оставить тот же вес конструкции или избежать ее перегрузки.Его едят мыши. Грызуны в толще пенопласта обожают делать гнезда.

Нужно закрывать пенопласт мелкой металлической сеткой, чтобы исключить такой казус.Он теплый. Его теплоизолирующие свойства на самом деле на высоте, показатель теплопроводности составляет 0,03-0,05 Вт (м*С). За счет этого часто используется пенопласт как утеплитель, отзывы о нем говорят, что он является надежным и недорогим материалом.Пенопласт дешевый, что дает ему большую фору перед остальными эффективными утеплителями.Данный материал прекрасно впитывает влагу, что не позволяет его использовать для утепления труб, которые находятся в земле.

Теперь перейдем к применению пенополистирола в малоэтажном частном строительстве.

Утепление пенопластом: просто и легко

Оно осуществляется очень просто.

Пенопласт с помощью специальных шурупов крепится к стене здания. Изначально стену при помощи шпаклевки можно выровнять, прикрепить плиту, потом опять нанести слой шпаклевки и покрасить. Таким образом получается совершенно ровная стена.

Утепление зданий снаружи

Пенопласт как утеплитель стенчаще всего используется именно снаружи. Данный способ дает возможность отодвинуть на внешнюю часть стены точку промерзания, не давая при этом холоду проникнуть внутрь.

Для этого используются листы толщиной 100 миллиметров. Они крепятся с помощью дюбелей и специального клея. Выполнение данных работ на высоте возможно только с использованием специальной техники.

Внутреннее утепление помещения

Этот способ менее распространен, нежели предыдущий, хотя является также эффективным. Очень удобно то, что реализовать его можно вне зависимости от времени года и погоды. Но перед утеплением стен внутри требуется их предварительная обработка специальными противоплесневыми составами.

Нужно учитывать, что пенопласт как утеплитель полезную площадь помещения уменьшает. Это объясняется тем, что он занимает достаточно много места, особенно если учитывать, что сверху крепится гипсокартон.

Утепление стен здания

Этот метод применим при строительстве 1- и 2-этажных домов. Возводится стенка толщиной 250 мм, потом прокладываются листы пенопласта, которые защищаются полиэтиленовой пленкой, далее – внутренняя стенка. Данный способ имеет преимущества в том, что пенопласт как утеплитель стен защищен полностью от воздействия открытого огня и механических повреждений.

Утепление полов

Если рассматривать пенопласт как утеплитель пола(отзывы о таком его применении можно увидеть в основном положительные), важно учитывать, что его листы укладываются в цементно-песчаный жидкий раствор во время выполнения стяжки. Пузыри воздуха выгоняются с помощью вибрации. Поверх материала делается также стяжка в 50 мм.

Эти меры особенно нужны для жилых домов с сырыми подвалами. А вот в квартирах средних этажей пенопласт как утеплитель пола станет также и хорошей звукоизоляцией. Кроме того, такая процедура выполняется при укладке водяного теплого пола.

Утепление потолков

Подобное утепление выполняется тем же образом, как и со стенами.

Отличие заключается в толщине используемых листов: она должна быть не более 50 мм. В типовом жилом доме в большинстве квартир высота потолков небольшая. Конечно, при возможности можно увеличить толщину пенопласта.

Такая мера позволяет утеплить квартиру, при этом уменьшить уровень шума и сделать жилище более уютным.

Утепление подвала пенопластом

Использовать пенопласт в этом случае не получится из-за его гигроскопичности. При этом резко возрастает его теплопроводность, а теплоизоляция сильно уменьшается.

Когда пенопласт в осенний и весенний период намокает, то вода в нем при заморозках превращается в лед, после чего разрывает материал. Намокший пенополистирол после первого же мороза становится трухой, превращаясь в отдельные шарики, не способные удержать тепло.

Утепление цоколя пенопластом

А вот для этого данный материал вполне возможно использовать.

При этом пенопласт как утеплитель укрывается сверху слоем штукатурки. К цоколю крепление пенопласта осуществляется на «грибки» из пластика, к которым потом крепится мелкая металлическая сетка. Потом на нее наносится штукатурка и уже сверху декоративный слой – клинкерный кирпич, дикий камень, фасадная плитка.

Для крепления пенопласта в этом случае использовать также можно профиль из металла под штукатурку. При этом от применения системы деревянных брусков желательно отказаться. Практика показывает, что на бетонном основании цоколя деревянные бруски начинают снизу гнить, влага также получает доступ и к утеплению.

Пенопласт для утепления системы мокрого фасада

На фасаде дома место пенопласта находится под слоем сплошных декоративных негорючих покрытий и штукатурки. Когда отсутствует доступ кислорода и открытого огня, при этом нет прямого воздействия влаги, данный материал проявляет свои лучшие свойства. Не стоит забывать и про приемлемую стоимость, низкую теплопроводность, а также малый вес.

Теплоизоляция крыши

Здесь нужно понимать, куда и какой ширины материал использовать. «Невентилируемая крыша» покрывается пенопластом толщиной 70 мм, далее на его поверхность укладывается битумный водостойкий слой. «Вентилируемая крыша» предполагает установку плит на обратную сторону крыши, вентилируемая полость при этом остается, предотвращая конденсацию.

Помещения чердака могут быть отличными жилыми комнатами. При этом теплоизоляция двухскатной крыши приносит большую пользу при небольших расходах. Для этого нужно вмонтировать в щели между стропилами пенопласт.

Теплоизоляция трубопроводов

До последнего времени теплоизоляции инженерных коммуникаций не придавалось особого значения, при этом из-за них доля теплопотерь составляет около 30%.

Для трубопроводов вентиляционных каналов,холодного водоснабжения, заглубленных кабелей и телефонных линий сегодня все чаще начали применять пенопласт как утеплитель. Данный материал используют также для защиты канализационных и водопроводных труб от замерзания. Несомненным достоинством использования пенопласта для этих целей является возможность придания данному материалу различных форм.

Где запрещено использовать пенопласт как утеплитель?

    Пенополистирол нельзя применять при утеплении бани, поскольку при повышенной влажности и нагревании получается эмиссия стирола.Не нужно утеплять им изнутри откосы окон – для этого желательно использовать пенополиуретан. Данный материал подходит больше для утепления комнат изнутри.Этот материал при утеплении внутренних помещений применять опасно, когда используется система из деревянных или металлических профилейи дальнейшая обшивка различными декоративными материалами.

Важно знать

Укладка листов пенопласта не допускается непосредственно на землю: сначала нужно выполнить гидроизоляционные работы, после чего залить слой стяжки. Иначе пол могут повредить грызуны.

При соблюдении всех правил использования срок службы пенопласта как утеплителя достигает 100 лет. Это является его несомненным преимуществом.

Соблюдение правил использования пенопласта как утеплителя дает возможность сберечь средства на отопление своего жилища, кроме того, избавиться от лишнего шума. Также он может защитить от солнечных жарких лучей, при этом не позволяя стенам снаружи прогреваться. Поэтому пропадает необходимость в регулярном использовании кондиционера, что позволяет экономить на электроэнергии.

Использование пенопласта для устройства теплоизоляции очень распространенное явление. Его популярность находит место как в строительстве частного характера, так и при возведении многоквартирных зданий.

Но, несмотря на это, хочется немного больше узнать о его качествах, о том, насколько выгодно использовать пенопласт в качестве утепляющего материала, и причины, по которым не рекомендуется его использование.

Итак, пенопласт как утеплитель, чем он хорош в этом качестве, а какие свойства оставляют желать лучшего? Давайте разбираться.

Общие характеристики пенопласта 

Пенопласт относится к категории материалов, структура которых имеет вспененный характер. Большую часть объема этого утеплителя занимает, как это ни странно, воздух. Именно поэтому его плотность намного ниже значения плотности исходного сырья.

Благодаря этому свойству вес панелей из пенопласта очень небольшой, что считается плюсом этого стройматериала. Также благодаря этому качеству пенопласт обладает высокими характеристиками, касающимися теплоизоляции и звукоизоляции.

В зависимости от того, какого качество сырье использовалось для производства, выпускается материал, обладающий разными параметрами, характеризующими его прочность. С повышением плотности уменьшается объем воздуха, следовательно, падают показатели, отвечающие за теплоизоляцию.

Именно за счет такого изменения увеличивается прочность данного компонента.Ориентируясь на плотность изделия и, соответственно, его прочность, выбирают область его применения. Если требуется максимальный показатель защиты от возможных механических повреждений при создании теплоизоляционного слоя, то в этом случае выбор падает на более прочный материал, плотность которого достаточно высока.А вот в ситуации, когда утепление выполняется путем создания каркасной конструкции, можно использовать менее плотный пенопласт, так как большая часть нагрузки в этом случае будет приходится именно на каркас. Проще говоря, пенопласт как утеплитель стен, в зависимости от обстоятельств, требует дополнительной защиты.

Области использования пенопласта или как утеплять пенопластом

Как уже отмечалось выше, пенопласт в качестве утеплителя довольно популярен и распространен. С его помощью повсеместно утепляют стены как с внутренней, так и с наружной стороны.Помимо стен утеплению пенопластом подвергаются потолки, полы и фундаменты. Не исключаются и такие помещения, как чердаки и подвалы.

Но обратите внимание, что специалисты не советуют проводить с помощью данного изделия утепление стен, имеющих выход на улицу, изнутри.Связано это с тем, что стена, имеющая контакт с улицей, в обязательном порядке должна обогреваться в результате имеющегося отопления. Так вот, если же для ее внутреннего утепления использовать пенопласт, то помимо теплоизоляции стены, вы получите ее изоляцию от обогрева изнутри. В ходе таких действий так называемая «точка росы» может переместиться в пространство между непосредственно самой стеной и утепляющим слоем из пенопласта.

В результате таких изменений воздействие влаги на стену увеличится, и теплоизоляция стены претерпит ряд негативных последствий.Такие изменения не приведут ни к чему хорошему, единственным результатом этого может стать быстрое разрушение конструкции. Именно поэтому профессионалы советуют проводить утепление стен с помощью пенопласта только с наружной стороны.

Но как уже говорилось выше, любой пенопласт, даже самый плотный, не имеет достаточной прочности, необходимой для качественного наружного утепления.Учитывайте, что при выполнении теплоизоляции фундамента необходимо помнить о дополнительной защите плит от нагрузки, исходящей от грунта, особенно при его вспучивании в морозное время года. Обратите внимание, что, если выполняя теплоизоляцию стен, для надежного укрепления утеплителя достаточно крепления армирующей сетки и последующих работ по оштукатуриванию, то в случае с теплоизоляцией подвального помещения потребуется намного более серьезного подхода. Целесообразно будет выполнение кирпичной кладки либо устройства опалубки из дерева.

В чем преимущества пенопласта, как утеплителя?

Уже говорили о том, что пенопласт пользуется заслуженным успехом и популярностью. Большую роль в этом сыграли его достоинства, которые и привлекают потенциальных потребителей. К ним можно отнести:

    пенопласт отличается устойчивостью к воздействию влажной среды, он обладает свойствами, которые позволяют не впитывать воду;его свойства теплоизоляции находятся на высоком уровне и отвечают большинству требований, предъявляемых к утеплителю;поверхность не восприимчива к образованию плесени и размножению бактериальных инфекций;

 

    монтаж не доставляет особых хлопот, так как материал обладает легким весом и структурой, которая довольно просто обрабатывается;цена остается доступной;отличается устойчивостью к низким и высоким температурам;обладает высокой степенью звукоизоляции;монтаж не требует дополнительных затрат на устройство гидроизоляции.

Это что касается достоинств пенопласта, но было бы нечестно умолчать о ряде имеющихся недостатков. Это:

    его прочность довольно низкая, в связи с этим требуется дополнительная защита с использованием других стройматериалов;не дышит, значит, не проницаем для воздуха;

 

    поверхность очень восприимчива к воздействию различных лакокрасочных составов, при контакте с ними пенопласт разрушается.

Итак, зная основные характеристики материала, ознакомившись с его достоинствами  и недостатками, вы легко сможете определиться с выбором необходимого вам утеплителя. Возможно, вы слышали ряд негативных высказываний о вреде пенопласта, но не забывайте, что любой строительный материал имеет ряд плюсов и минусов, поэтому нужно взвесить все обстоятельства и выбрать самый оптимальный вариант, подходящий для того либо иного конкретного случая. Удачи!

    Дата: 28-02-2015Просмотров: 215Комментариев: Рейтинг: 33

Пенопластом называется вспененный полимер, который имеет несколько преимуществ в сравнении с аналогичными материалами.

Очень легкие листы белого цвета нашли применение в самых разных отраслях промышленности. Но больше всего свойства пенопластакак утеплителя востребованы в строительстве (кстати, как и минваты). Он применяется для утепления фасадов домов, внутренних и наружных теплоизоляционных работ.

Наиболее эффективно использовать пенопласт для наружного утепления.

Благодаря высоким экологическим показателям, отличным эксплуатационным свойствам пенопласт остается лидирующим материалом, который применяется как утеплитель.

Основные характеристики

На сегодняшний день это, пожалуй, самый востребованный теплоизоляционный материал, который применяется во всех видах строительства. Многие задаются вопросом: насколько оправдана такая популярность, какие недостатки пенопласта, в чем его преимущество? Чтобы ответить на этот вопрос, нужно изучить его состав и свойства.

Характеристики пенопласта разной толщины.

Пенопласт относится к тому виду материалов, которые обладают структурой, напоминающей вспененную массу. Практически весь объем данного материала является воздухом.

Поэтому плотность пенопластанамного ниже, если сравнивать ее с плотностью сырья, применяющегося для его получения. Такая структура оказывает серьезное влияние на малый вес пенопластовых панелей. Имея высокое содержание воздуха, этот утеплитель отличается превосходными термоизоляционными характеристиками.

Для изготовления пенопласта применяют многочисленные виды сырья, отличающиеся показателями плотности, обладающими неодинаковой механической прочностью. Когда наблюдается высокая плотность, молекулярная структура материала отличается минимальным объемом газа, резко снижаются теплоизоляционные свойства. Однако подобные недостатки компенсируются высокой устойчивостью при возникновении механических воздействий.

Листы пенопласта в качестве утеплителя отличаются показателями плотности и, естественно, параметрами прочности.Если листы обладают низким коэффициентом плотности, то во время утепления помещения их требуется защищать от возможных механических нагрузок. Лист пенопласта, с характерной невысокой плотностью, в большинстве случаев применяется как утеплитель, когда проводится каркасное строительство. Иначе говоря, в тех местах, где основные нагрузки принимает внешний слой утеплителя.

Если пенопласт обладает большой плотностью, для защиты панелей от всевозможных механических воздействий монтировать каркас необязательно. Однако минимальная защита все равно должна присутствовать.

Вернуться к оглавлению

Материал обладает низкой теплопроводностью.

Его звукоизолирующие характеристики нашли высокое применение при утеплении лоджий и стен в городских квартирах. Такой пенопластовый утеплитель, которым изолирован пол чердака, делает микроклимат намного стабильнее. Он создает комфортные и уютные условия проживания.

Таблица технических характеристик пеноплекса.

Особые присадки, которые входят в состав этого материала, придают ему огнеупорные свойства. Это позволяет применять его для отделки зданий с наружной стороны.

Материал никогда не гниет, на нем никогда не появляется плесень. Поэтому его довольно часто устанавливают в местах, где постоянно наблюдается повышенная влажность. Не обходится без него и прокладка подземных магистралей, его применяют в качестве изолятора.

Обладая такими великолепными свойствами, этот материал во многих местах стал просто незаменимым.

Одним из его главных преимуществ является небольшой вес. Он изготавливается методом вспенивания с последующим охлаждением полистирола, причем состоит пенопласт практически полностью из газовых пузырьков. В этом и кроется главный секрет малого веса, огромные блоки пенопласта в состоянии поднять 10-летний ребенок.

Все знают, что пенопласт намного легче воды, следовательно, он никогда не тонет, а всегда плавает по поверхности. Данное свойство позволяет использовать его в качестве буйков, указывающих, где особенно глубоко.

Обработка этого материала не вызывает никаких проблем. Он прекрасно режется, его легко монтировать. Но при установке пенопластовых листов нужно обязательно выполнять все пункты инструкции, так как для каждой поверхности требуется индивидуальная технология.

Достоинства пенопласта.

Еще одним достоинством считается великолепная устойчивость. Для него не опасно попадание ультрафиолетовых солнечных излучений, ему не страшны постоянные скачки температуры, большие холода, он не реагирует на перемены атмосферного давления. Эти прекрасные характеристики нашли широкое применение, когда проводится строительство зданий и делается внутренняя отделка квартир.

К характерным достоинствам относится еще один важный показатель — теплоемкость. Имея высокие термоизоляционные показатели, пенопласт стал считаться одним из самых достойных утеплителей.

Материал обладает невысоким термическим расширением. Он в состоянии переносить перепады температуры, начиная от -180 и заканчивая +80 градусами тепла. Крупногабаритные блоки обычно монтируются прямо к стенам жилого помещения, что позволяет длительное время сохранять тепло внутри здания.

О пенопласте можно говорить как о материале, который имеет великолепные звукоизолирующие свойства.

Он не пропускает ударный шум, из него можно создавать самые разные сложные формы. Такие пенопластовые конструкции склеиваются гипсовыми или цементными растворами, применяются также и различные мастики. Надо сказать, что очень важным положительным свойством пенопластовых блоков считается противопожарная безопасность.

Материал совершенно не горюч, что обязательно сыграет важную роль при пожаре. Конечно, полностью потушить огонь он не сможет, но уменьшить его ему вполне по силам. Материал рассчитан на длительный срок эксплуатации.

Нельзя не отметить и химическую стойкость пенопластовых листов.

Таблица сравнения харакетристик пенопласта и ЭППС.

Этот утеплитель не выделяет никаких токсических веществ, не знает, что такое пыль, и не обладает характерным запахом. Если говорить об экологии, то пенопласт полностью отвечает всем экологическим требованиям, так как при его производстве применяются вещества, которые не представляют опасности окружающей среде. В пенопласте отсутствуют фреоновые соединения, которые наносят вред озоновой оболочке.

Пенопласт — один из наиболее дешевых материалов, конечно, если его правильно использовать. Это дает возможность достаточно серьезно экономить при строительстве здания и утеплении дома.

Пенопласт совершенно равнодушен к высокой влажности, он практически не впитывает воду. Такое свойство позволяет при монтировании пенопласта не устанавливать дополнительную гидроизоляцию. Никогда на его поверхности не появится плесень или грибок.

Вернуться к оглавлению

Как уже было сказано выше, пенопласт является превосходным утеплителем, причем его одинаково используют как внутри здания, так и с его внешней стороны. Однако намного чаще утепление пенопластом подвергают внешние стены. Это вызывает смещение точки промерзания на внешнюю сторону стены, холод не проходит внутрь здания.

Технология утепления стен пеноплексом.

Не стоит утеплять пенопластом внешние стены. Нагрев должен происходить изнутри, а пенопластовые панели станут блокировкой доступа тепла, в результате стена будет оставаться холодной, произойдет смещение точки росы. Она может попасть внутрь стены, образоваться в зазоре между стенкой и пенопластом.

Данное явление отрицательно сказывается на стене дома. В месте расположения точки росы начнет происходить конденсация влаги, она станет замерзать при больших морозах, а это приведет к медленному разрушению стены. Именно по этой причине утеплять дом панелями пенопласта лучше всего с внешней стороны здания, это самый оптимальный вариант.

Пенопластовые плиты, после окончания монтажа, нужно обязательно закрыть слоем хорошей штукатурки.

Это обязательно, ведь пенопласт не имеет высокого показателя устойчивости при больших механических воздействиях. Во время утепления фасада здания листами пенопласта материал закрепляют пластмассовыми дюбелями, чтобы впоследствии закрепить различные отделочные материалы, например, райдинг. Если такое крепление не делать, то пенопласт может просто из-за большого давления отойти от стены и упасть.

Вернуться к оглавлению

Последнее время строители начали утеплять полы здания не только с помощью ваты, но и пенопластом. Смонтированный на полу пенопластовый блок будет удерживать тепло, он станет прекрасным звукоизолятором, поможет уменьшить звук шагов и скрип двигающейся мебели, что очень важно при многоэтажном строительстве.

Чтобы утеплить полы, используется пенопласт толщиной от 5 см. Монтируются пенопластовые листы прямо на гидроизоляцию. Образовавшиеся швы заделываются герметиком, и затем на полу выполняется черновая стяжка.

Вернуться к оглавлению

Схема внутреннего и наружного утепления пенопластом.

Фундамент — самая главная часть здания, именно он влияет на долговечность дома и его тепловой комфорт. По этой причине при возведении здания теплоизоляция фундамента является важнейшим технологическим процессом. Особенно это касается районов Крайнего Севера, где приходится сталкиваться с сильнейшими морозами.

В этом случае пенопласт становится незаменимым материалом.

Он становится средним слоем фундаментных блоков. Так же отлично чувствует себя пенопласт в качестве утеплителя, когда возводятся бесподвальные строения. Пенопластовые утепляющие плиты кладутся несколькими слоями на заранее подготовленную площадку, а затем заливаются бетонным раствором.

После этого строительство продолжается в соответствии с технологическим процессом. В данном случае бетонная стяжка представляет собой фундамент, она становится одновременно поверхностью пола.

Нашел применение пенопласт и в монтаже внешней изоляции фундамента.

Он предотвращает промерзание грунта. С этой целью вокруг всего фундамента делается траншея, в которую укладываются теплоизолирующие пенопластовые плиты. Траншею после этого тщательно засыпают.

Источники:

  • www.syl.ru
  • aquagroup.ru
  • ostroymaterialah.ru

Характеристики пенопласта полистирольного | Delo1

Под словом пенопласт понимается продукт, полученный из высокополимерного материала  методом вспенивания. Существует несколько видов пенопласта, в зависимости от исходного сырья. Остановимся на рассмотрении свойств пенопласта полистирольного. Исходным сырьем для получения данного пенопласта служит полистирол.

Пенополистирол (пенопласт, полученный из полистирола) – материал, состоящий из мелких ячеек, округлой формы (не обязательно одинакового диаметра) с тонкими стенками. Во внутреннем объеме ячеек – газ — воздух с мизерным процентом примеси других газов.

Пенополистирол  обладает следующими свойствами:

  1. низкая теплопроводность (теплоизолятор)
  2. звуконепроницаем (звукоизолятор)
  3. практически водонепроницаем
  4. устойчив к длительному воздействию влаги (процент впитывания низкий)
  5. незначительная воздухопроницаемость (достаточная для «дыхания стен»)
  6. выдерживает значительные перепады температур окружающей среды без изменения свойств
  7. процесс разрушения (старения) очень длительный (от 70 и больше лет)
  8. не создает на поверхности благоприятной среды для жизнедеятельности бактерий и микроорганизмов
  9. имеет низкий объемный вес
  10. легко подвергается механической обработке
  11. легко склеивается с различными строительными отделочными материалами
  12. безвреден
  13. устойчив к воздействию морской воды, слабых и сильных минеральных щелочей, кислот (кроме концентрированных HCl, HNO3)
  14. неустойчив к воздействию органических растворителей (бензол, ацетон, уксусно-этиловый спирт), к насыщенным углеводородам (спирт, бензин, керосин)
  15. диэлектрик (отсутствие электропроводности)
  16. не поддерживает горения
  17. механические повреждения не влекут выброса вредных веществ
  18. имеет невысокую себестоимость
  19. процессы производства пенопласта не сопровождаются выбросами в окружающую среду вредными выбросами
  20. рабочие, занимающиеся производством пенопласта полистирольного, должны пройти курс специального обучения
  21. технология производства пенопласта полистирольного позволяет получать продукт (пенопласт) заданной твердости.

Итак, характеристики показывают, что на рынке строительных материалов пенопласт полистирольный на сегодня – лидер по применению в строительстве объектов самого различного направления. Свойства пенопласта полистирольного обеспечивают применение его не только в строительстве, но и во многих других областях народного хозяйства.

Свойства пены — PetroWiki

Объемная пена, обнаруженная в головке пивного стакана или в сочетании с моющими растворами, представляет собой метастабильную дисперсию газа относительно большого объема в непрерывной жидкой фазе, которая составляет относительно небольшой объем. пены. Альтернативное определение объемной пены — это «скопление пузырьков газа, отделенных друг от друга тонкими пленками жидкости». [1] В большинстве классических пен содержание газа довольно высокое (часто от 60 до 97% объема).В объемной форме, например, в наземных сооружениях и трубопроводах нефтепромыслов, пена образуется, когда газ контактирует с жидкостью в присутствии механического перемешивания. Используемый здесь термин «объемные пены» — это пены, которые существуют в контейнере (например, в бутылке или трубе), для которых объем контейнера намного больше, чем размер отдельных пузырьков пенного газа.

Общая природа пен

Капиллярные процессы контролируют образование и свойства пен в пористых средах. Пены для улучшения соответствия представляют собой дисперсии микрогазовых пузырьков, как правило, с диаметром / длиной от 50 до 1000 мкм.Пена в пористой среде существует в виде отдельных микрогазовых пузырьков, находящихся в непосредственном контакте со смачивающей жидкостью стенок поры. Эти микрогазовые пузырьки разделены жидкими пластинками, которые перекрывают стенки пор и образуют жидкостную перегородку в масштабе поры между пузырьками газа. Пена распространяется в большинстве пород матричного коллектора в виде цепочки пузырьков, в которой каждый газовый пузырь отделен от следующего жидкой пленкой из ламелей. Во многих случаях отдельные пузыри пены в породе матрицы коллектора могут иметь длину множества пор.Gauglitz et al. определили структуру пены в пористой среде как «дисперсию газа в непрерывной жидкой фазе с по крайней мере некоторыми путями газового потока, прерываемыми тонкими пленками жидкости, называемыми ламелями». [2]

Все пены, обсуждаемые на этой странице, и все пены, которые используются для улучшения соответствия, содержат поверхностно-активные вещества, растворенные в жидкой фазе пены для стабилизации газовой дисперсии в жидкости. Газовая фаза пены может включать как классический газ, так и сверхкритический газ, такой как сверхкритический / плотный CO 2 .За исключением специально отмеченного, все пены, обсуждаемые в этой главе, которые используются для улучшения соответствия требованиям нефтяных месторождений, являются пенами на водной основе. Эта глава ограничивается в первую очередь обсуждением пен на водной основе, стабилизированных поверхностно-активными веществами, для использования в улучшении соответствия во время операций по добыче нефти.

На рис. 1 показан двухмерный срез обобщенной системы объемной пены. [3] Тонкие пленки жидкости, разделяющие пузырьки пенного газа, определяются как ламели пены. Соединение трех ламелей газового пузыря под углом 120 ° называется границей плато.В устойчивых объемных пенах сферические пузырьки газа пены превращаются в ячейки пены, многогранники, разделенные почти плоскими тонкими пленками жидкости. Такая пена называется сухой пеной. Ячейки пены многогранников почти, но не совсем, являются правильными додекаэдрами. В трех измерениях четыре границы плато ячейки пены встречаются в точке под тетраэдрическим углом примерно 109 °. [3]

  • Рис. 1 — Обобщенный двухмерный срез системы объемной пены.

Пена в пористой среде обычно имеет пузырьки, которые по размеру не меньше размеров поровых тел.Пена существует в пористой среде резервуар-порода в виде цепочек пузырьков, где граница плато пластин пены формируется на стенке поры и имеет, для статической нетекучей пены в теле поры, угол около 90 ° между жидкими пластинами и порой. стена.

Пенообразователи

Поверхностно-активные вещества являются необходимым третьим ингредиентом, необходимым для образования пен, обсуждаемых в этой статье. Понимание основ химии поверхностно-активных веществ важно при выборе подходящего поверхностно-активного вещества для конкретного применения пенопласта на нефтяных месторождениях.

Молекула поверхностно-активного вещества содержит в одной молекуле как полярный, так и неполярный сегменты. Полярный или гидрофильный сегмент молекулы поверхностно-активного вещества имеет сильное химическое сродство к воде. Неполярный или липофильный сегмент имеет сильное химическое сродство к неполярным углеводородным молекулам. Когда вода и масло или вода и газ находятся в контакте, молекулы поверхностно-активного вещества стремятся разделиться на поверхность раздела нефть / вода или газ / вода и уменьшить межфазное натяжение границы раздела. Рис.2 изображает молекулу поверхностно-активного вещества, находящуюся на границе раздела масло / вода. Разделение молекулы поверхностно-активного вещества на границу раздела газ / вода и последующее снижение межфазного натяжения является основным механизмом, с помощью которого поверхностно-активные вещества стабилизируют дисперсии газа в воде с образованием метастабильной пены.

  • Рис. 2 — Изображение молекулы полимера, находящейся на границе раздела нефть / вода.

Поверхностно-активные вещества подразделяются на четыре типа, которые различаются по химическому составу полярной группы молекулы поверхностно-активного вещества.

  • Анионики — Полярная группа анионного поверхностно-активного вещества представляет собой соль (или, возможно, кислоту), где полярная анионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный катион (часто натрий) сильно разделен в водной среде. сторона границы раздела нефть / вода или газ / вода. Анионные поверхностно-активные вещества часто используются в пенопластах на нефтяных месторождениях, потому что они являются относительно хорошими поверхностно-активными веществами, обычно устойчивыми к удерживанию, достаточно химически стабильными, доступными в промышленных масштабах и относительно недорогими.
  • Катионы — Полярная группа катионного поверхностно-активного вещества представляет собой соль, в которой полярная катионная группа непосредственно присоединена к молекуле поверхностно-активного вещества, а противодействующий и поверхностно-неактивный анион сильно разделен на водную сторону границы раздела масло / вода или газ / вода. . Катионные поверхностно-активные вещества нечасто используются в пенопластах для нефтепромыслов, поскольку они имеют тенденцию сильно адсорбироваться на поверхностях глин и песка и относительно дороги.
  • Неионогенные вещества — Полярная группа неионогенного поверхностно-активного вещества является не солью, а скорее химическим веществом, таким как спиртовая, эфирная или эпоксидная группа, которая усиливает свойства поверхностно-активного вещества путем создания контраста электроотрицательности.Неионные поверхностно-активные вещества менее чувствительны к высокой солености и могут быть относительно недорогими.
  • Амфотерные вещества — Амфотерные поверхностно-активные вещества содержат две или более характеристики перечисленных выше химических типов поверхностно-активных веществ.

На рис. 3 показана химическая структура выбранных поверхностно-активных веществ. В пределах любого из типов поверхностно-активных веществ могут быть существенные различия в их химическом составе и характеристиках. Химический состав, размер и степень разветвления липофильного сегмента молекулы поверхностно-активного вещества могут иметь большое влияние на характеристики пена-поверхностно-активное вещество, так же как и химия гидрофильной части молекулы поверхностно-активного вещества.Даже небольшие и тонкие различия в липофильном сегменте могут резко изменить свойства поверхностно-активного вещества. Большинство коммерческих продуктов с поверхностно-активными веществами содержат такое распределение типов и размеров поверхностно-активных веществ, которое дополнительно усложняет поверхностно-активные вещества, используемые в пенах, улучшающих конформность.

  • Рис. 3 — Типы химического состава ПАВ.

При использовании пены в сочетании с заводнением пара или любым применением при повышенных пластовых температурах важно выбрать поверхностно-активное вещество, которое будет термически стабильным в течение необходимого срока службы пены в резервуаре.Исторически сложилось так, что альфа-олефиновые поверхностно-активные вещества и поверхностно-активные вещества на основе нефтяных сульфонатов наиболее широко использовались в пенах, применяемых в высокотемпературных (> 170 ° F) коллекторах. Сульфатные поверхностно-активные вещества иногда использовались в низкотемпературных (<120 ° F) резервуарах.

Альфа-олефинсульфонаты оказались одним из самых популярных и широко используемых химикатов поверхностно-активных веществ для использования в пенах. Это во многом привело к их совокупным хорошим характеристикам пенообразования, относительно хорошей солеустойчивости, хорошей термической стабильности, доступности и относительно низкой стоимости.Было предложено, чтобы смеси с различным химическим составом поверхностно-активных веществ обеспечивали преимущества при составлении соответствующих пен. [4]

Использование фторированных поверхностно-активных веществ в формулах пены показало некоторые перспективы. [5] Сообщалось, что фторированные поверхностно-активные вещества, используемые с другими поверхностно-активными веществами, часто улучшают устойчивость пены к маслу. [6] Фторированные поверхностно-активные вещества не нашли широкого применения в полевых условиях пенопластов в основном из-за их относительно высокой стоимости.

Свойства пены

Несколько свойств, важных для характеристики объемной пены, которая может присутствовать в бутылке, — это качество пены, текстура пены, распределение пузырьков по размерам, стабильность пены и плотность пены. Качество пены — это объемный процент газа в пене при заданном давлении и температуре. Качество пены может превышать 97%. Объемные пены, имеющие достаточно высокое качество пены, так что ячейки пены состоят из многогранных жидких пленок, называются сухими пенами. [3] Пены, улучшающие эксплуатационные характеристики нефтяных месторождений, обычно имеют качество пены в диапазоне от 75 до 90%.При распространении через пористую среду подвижность многих пен уменьшается по мере увеличения качества пены до верхнего предела стабильности пены с точки зрения качества пены (верхний предел часто составляет> 93% качества пены). При работе с паровой пеной на месторождениях под качеством пара понимается массовая доля воды, которая превращается в пар.

Текстура пены является мерой среднего размера пузырьков газа. Как правило, по мере того, как текстура пены становится более тонкой, пена будет иметь большее сопротивление течению в матричной породе.

Распределение размеров пузырьков — это мера распределения размеров пузырьков газа в пене. При сохранении всех других переменных постоянными объемная пена с широким распределением размеров газовых пузырьков будет менее стабильной из-за диффузии газа от маленьких к большим пузырькам газа. Сопротивление, придаваемое пеной потоку жидкости в пористой среде, будет выше, когда размер пузырьков относительно однороден. [3]

Стабильность пены на водной основе зависит от химических и физических свойств водной пленки, стабилизированной поверхностно-активными веществами, разделяющей пузырьки газа пены.Пены — метастабильные образования; следовательно, вся пена в конечном итоге разрушится. Разрушение пены является результатом чрезмерного утончения и разрыва жидких пленок пены со временем, а также диффузии газа из более мелких пузырьков в более крупные пузырьки, что приводит к увеличению размера пузырьков пены. Внешние воздействия, такие как контакт с пенообразователем (например, нефтью или неблагоприятной соленостью), контакт с гидрофобной поверхностью и местный нагрев, могут разрушить структуру пены.

Факторы, влияющие на стабильность ламелей пены, включают гравитационный дренаж, капиллярное всасывание, поверхностную эластичность, вязкость (объемную и поверхностную), электрическое двухслойное отталкивание и стерическое отталкивание. [3] Стабильность пены, находящейся в пористой среде, требует целого ряда дополнительных соображений, которые рассматриваются в следующем подразделе этой главы.

Одной из привлекательных особенностей пен для использования в операциях газового заводнения является относительно низкая эффективная плотность пен. (В качестве уравновешивающего примечания: пены для улучшения соответствия, содержащие сверхкритический CO 2 , могут достигать плотности, превышающей плотность некоторых видов сырой нефти.) Особенность низкой плотности имеет положительные последствия для пен, используемых как при заводнении с контролем подвижности, так и для блокирования поток жидкости.Низкая эффективная плотность приводит к тому, что пена выборочно размещается выше в интервале коллектора, где наиболее вероятно имеет место поток заводнения или добыча газа.

Для технического пояснения, поток пены в пористой среде фактически происходит в виде цепочки пузырьков газа, разделенных жидкими пластинками. Таким образом, строго говоря, течение пены в пористой среде происходит в виде двухфазного потока, а именно потока пузырьков газа и потока жидких ламелей. С этой более технически правильной точки зрения, именно низкая плотность газовой фазы способствует размещению пены выше в резервуаре.Во время заводнения газом, таким как заводнение водяным паром или CO 2 , пены низкой плотности, используемые для контроля подвижности, хорошо подходят для решения и уменьшения общей проблемы подавления газа, которая часто препятствует контакту газа для добычи нефти закачиваемого газа с нефтенасыщенностью ниже в вертикальный интервал коллектора. Селективный контроль подвижности с помощью пен с низкой плотностью в верхней части коллектора заставит большее количество вытесняющего текучего газа контактировать с нефтенасыщенными секциями в нижней части коллектора.

Низкая плотность пены, используемой во время газоблокирующей обработки, будет иметь тенденцию приводить к размещению пены выше в интервале коллектора, где наиболее вероятно возникновение наступательного потока газа и добычи.В этом отношении пены для использования в обработках блокирующим агентом хорошо подходят для решения проблем образования газового конуса и образования газового конуса, возникающих в добывающих скважинах. Кроме того, вытеснение газа в относительно однородном пласте с хорошей вертикальной проницаемостью вызывает чрезмерную добычу газа в верхнем интервале добывающих скважин. Газоблокирующая пена с низкой плотностью способствует удобному размещению вокруг таких проблемных скважин.

При рассмотрении потенциального преимущества низкой плотности во время укладки пены в ходе операции по повышению соответствия, относительные эффекты сил тяжести vs.необходимо тщательно учитывать вязкие силы, действующие во время укладки пены. То есть необходимо оценить горизонтальный градиент перепада давления по сравнению с вертикальным градиентом перепада давления, который пена будет испытывать во время ее потока и / или размещения в резервуаре.

Режим впрыска

Для впрыска улучшающих конформность пен используется один из трех четко различающихся режимов:

  • Последовательный впрыск
  • Совместный впрыск
  • Предварительно сформированная пена, созданная на поверхности перед инъекцией.

Последовательная закачка включает попеременную закачку в нефтяной пласт газовой и водной фаз пены. Совместная закачка включает совместную закачку в пласт газовой и жидкой фаз пены. Из-за значительной эффективной вязкости пен и связанной с этим плохой приемистости предварительно сформованных пен первые применения пен, улучшающих конформность, как правило, включали режим последовательного или совместного впрыска. Кроме того, последовательный и совместный впрыск значительно проще реализовать в полевых условиях.Последовательный впрыск также позволяет избежать проблем с коррозией труб, если газ и пенообразующий раствор образуют коррозионную смесь, например пену CO 2 .

Концепция, подтвержденная лабораторными данными, заключается в том, что во время последовательного или совместного нагнетания пена будет образовываться на месте в основной породе коллектора. Это утверждение подтверждается ожиданием того, что газ с низкой вязкостью и высокой подвижностью будет иметь тенденцию попадать в водный пенообразующий раствор и образовывать пену на месте.

Тем не менее, есть две важные проблемы, связанные с противодействием. Во-первых, когда газ начинает проникать в водный раствор и образовывать пену на месте, вновь образованная пена будет существенно уменьшать последующее поступление газа и отводить последующий поток газа от оставшегося водного пенообразующего раствора, находящегося непосредственно перед первоначально образованной пеной. Это явление приводит к неэффективному и неэффективному использованию вводимых пенных химикатов и жидкостей для образования пены. Во-вторых, в промежуточных и дальних местах ствола скважины может не хватить механической энергии и / или перепада давления для образования пены на месте при использовании обычных пенообразующих растворов.Это особенно важно для пен, содержащих пар, азот и природный газ.

Krause et al. [7] сообщил об относительно обработках пеной в призабойной зоне добывающей скважины, которые применялись на месторождении Прудо-Бей для снижения чрезмерного газового фактора, возникающего при добыче реинжектируемого природного газа. Первая обработка включала закачку пенообразующего раствора в резервуар с последующей серией промывок. Считалось, что последующая добыча газа через размещенный пенообразующий раствор, аналогично режиму последовательного нагнетания, вызовет образование газоблокирующей пены на месте.Вторая пенная газоблокирующая обработка включала последовательную закачку пенообразующего раствора и порции азота. Ни одна из этих первых двух обработок пеной газоблокирования не показала снижения газового фактора после обработки. Третья пена, блокирующая газ, представляла собой азотную пену с качеством 65%, которая была предварительно сформирована на поверхности перед закачкой. Эта обработка значительно снизила газовый фактор обработанной производственной скважины в течение нескольких недель. Эти результаты показывают, что для многих применений пен для природного газа и азота, улучшающих соответствие требованиям, закачка пены с использованием предварительно сформированного режима, по сравнению с последовательным впрыском или режимом совместной закачки, приведет к превосходным характеристикам пены в нефтяном пласте при проведении «околоскважинные» обработки.Если не могут быть приведены убедительные аргументы в пользу обратного для конкретного применения, пены для большинства применений обработок для улучшения конформности ближнего и промежуточного ствола скважины должны быть предварительно сформированы на поверхности перед закачкой.

Последовательный процесс, также известный как процесс чередования воды с газом (WAG), заключающийся в последовательном и многократно чередующемся закачке порций CO 2 и водного вспенивающего раствора, часто предпочтителен при использовании пены CO 2 для целей контроля подвижности во время CO 2 затопление.Это связано с тем, что CO 2 , растворенный в водном растворе поверхностно-активного вещества, образует угольную кислоту, которая вызывает коррозию стальных труб. Из-за низкого поверхностного натяжения CO 2 образование и распространение пены гораздо более осуществимо (чем пена водяного пара, азота или природного газа) при реалистичных градиентах полевого давления, которые возникают по всему коллектору. [1]

Исследования с помощью компьютерного моделирования показали, что оптимальная стратегия закачки для преодоления газового обхода во время операций заводнения — это попеременная / последовательная закачка отдельных больших пробок газа и вспенивающейся жидкости при максимально допустимом фиксированном значении. давление впрыска. [8] Это исследование ограничивалось закачкой пены в однородный пласт и не учитывало взаимодействие пены с нефтью. Режим закачки поверхностно-активного вещества с чередованием-газом (SAGA) для формирования пены с контролем подвижности на месте был предложен для использования при проведении крупных проектов заводнения WAG в резервуарах Северного моря. [9]

Список литературы

  1. 1.0 1.1 Россен, W.R. 1996. Пены для увеличения нефтеотдачи. Пены — теория, измерения и применение , R.K. Prud’homme and S.A. Khan ed., 413-464. Нью-Йорк: Marcel Dekker Inc.
  2. ↑ Гауглиц, П.А., Фридманн, Ф., Кам, С.И. и др. 2002. Образование пены в пористой среде. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75177-MS. http://dx.doi.org/10.2118/75177-MS
  3. 3,0 3,1 3,2 3,3 3,4 Шрамм Л.Л. и Вассмут Ф.1994. Пены: основные принципы. Пены: основы и применение в нефтяной промышленности , изд. Л. Л. Шрамма, 3-45. Вашингтон, округ Колумбия: достижения в области химии, серия 242, American Chemical Soc.
  4. ↑ Llave, F.M. и Olsen, D.K. 1994. Использование смешанных поверхностно-активных веществ для создания пены для контроля подвижности при химическом заводнении. SPE Res Eng 9 (2): 125-132. SPE-20223-PA. http://dx.doi.org/10.2118/20223-PA
  5. ↑ Далланд, М. и Хансен, Дж. Э. 1999.Пены с контролем газового фактора: демонстрация эффективности процесса производства пены на масляной основе в модели физического потока. Представлено на Международном симпозиуме SPE по нефтехимии, Хьюстон, Техас, 16-19 февраля 1999 г. SPE-50755-MS. http://dx.doi.org/10.2118/50755-MS
  6. ↑ Маннхардт, К., Новосад, Дж. Дж., И Шрамм, Л. Л. 2000. Сравнительная оценка устойчивости пены к маслу. SPE Res Eval & Eng 3 (1): 23-34. SPE-60686-PA. http://dx.doi.org/10.2118/60686-PA
  7. ↑ Краузе Р.Э., Лейн, Р.Х., Кюне, Д.Л. и другие. 1992. Обработка добывающих скважин пеной для увеличения добычи нефти в Прудхо-Бэй. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 22-24 апреля 1992 г. SPE-24191-MS. http://dx.doi.org/10.2118/24191-MS
  8. ↑ Шан, Д. и Россен, W.R. 2002. Оптимальные стратегии впрыска для пены IOR. Представлено на симпозиуме SPE / DOE по повышению нефтеотдачи пластов, Талса, Оклахома, 13-17 апреля 2002 г. SPE-75180-MS. http://dx.doi.org/10.2118/75180-MS
  9. ↑ Хансен, Дж.E. et al. 1995. Закачка SAGA: новый комбинированный процесс IOR для стратифицированных коллекторов. Геологическое общество, Лондон, специальное издание. 84 : 111-123. http://dx.doi.org/10.1144/GSL.SP.1995.084.01.12

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на веб-сайтах, отличных от PetroWiki и OnePetro.

См. Также

Пены

Поведение пены в пористой среде

Пены как средства контроля мобильности

Пены как блокирующие агенты

Области применения пен для повышения соответствия

PEH: полимеры, гели, пены, смолы

Категория

типов пены | Определения, качества и общее применение

Описание:

Dry Fast Foam очень хорошо подходит для наружного применения.Он не впитывает воду, не образует плесени, гниения или грибка. Он очень эластичный и плавучий, имеет структуру с открытыми ячейками. Dry Fast Foam используется для фильтрации или набивки, подверженных воздействию большого количества жидкости.

Технические характеристики:

9037

: //foamonline.com/wp-content/uploads/2020/01/Fry-Fast-Foam.jpg 467 700 FoamOnline /wp-content/uploads/2020/01/foamonline-logo-300×34.png FoamOnline2020-01-08 05: 23: 562020-10-15 13: 07: 39Dry Fast Foam

Качество: Отличное
Вес: 2,15 фунта на куб. Фут. .8 лет
Цвет: Бежевый
TEST MIN MAX ЕДИНИЦЫ
902 902 9024

Плотность: 1,75 2,15 фунтов / фут³
Растяжение: 8 фунт / кв.

2.0 фунтов / дюйм
IFD 25% R: 30 35 фунтов
Компрессионный комплект 50%: 15%

https : //foamonline.com/wp-content/uploads/2020/01/Closed-Cell-Foam.jpg 467 700 FoamOnline /wp-content/uploads/2020/01/foamonline-logo-300×34.png FoamOnline2020-01-08 05: 23: 212020-10-15 13: 09: 09 Пена с закрытыми порами

Описание:

Closed Cell Foam не впитывает воду, не поддается биологическому разложению, всплывает, обладает высокой прочностью на разрыв и непроницаем. к нефти.Closed Cell Foam используется в ковриках для упражнений, ударном аэробном оборудовании и облицовке боксов механика. Это хороший теплоизолятор (чехлы на джакузи).

Технические характеристики:

:
% от исходной толщины
(ASTM D395)
Качество: Отлично
Вес: 2,0 фунта на куб. Фут
Диапазон плотности, PCF:
(ASTM D162467)
Структура ячеек: Закрытая
Долговечность: Прибл.15 лет
Цвет: Черный
Прочность на сжатие, фунт / кв. Дюйм:
(ASTM D1056)
при отклонении 25%
при отклонении 50%
5-8
14-18
20% макс.
Предел прочности, psi:
(ASTM D1564)
30-50
Удлинение,% до разрыва:
(ASTM D1564)
130–180
Сопротивление раздиру, фунт / дюйм:
(ADTM D624)
7–13
Водопоглощение, фунт / фут²
поверхности среза, макс .:
(Mil P-40619)
0.07
Плавучесть, фунт на куб. Фут:
(Mil P-40619) (USCG)
55
Температурный диапазон F: от -110 до +225

Описание:

Пена с эффектом памяти, также известная как вязкоупругая пена, представляет собой высококачественную пену, которая соответствует форме вашего тела.Пена с эффектом памяти была разработана для сидения космических челноков и в настоящее время используется для изготовления матрасов и терапевтических применений.

Технические характеристики:

Качество: Отлично
Вес: Средний Мягкий — 3,2 фунта на куб. Фут
Мягкий — 4,0 фунта 2 60 9026 фут.

Плотность: 2,80 ± 15% — 4,0
Структура ячеек: Открытая
Долговечность: Прибл.10 лет.

https://foamonline.com/wp-content/uploads/2020/01/Memory-Foam.jpg 467700 FoamOnline /wp-content/uploads/2020/01/foamonline-logo-300×34.png FoamOnline2020 -01-08 05: 22: 122020-10-15 13: 06: 19Memory Foam

Описание:

Rebond Foam используется для набивки ковров, весового оборудования, сидений мотоциклов и других покрытых покрытий.Rebond Foam очень эластичен и выдерживает высокие удары и нагрузки.

Технические характеристики:

Качество: Excellent
Вес: 5,0 фунтов на кубический фут
Плотность фунтов на кубический фут: 5,0 Структура ячейки: Открытая
Долговечность: Прибл. 12 лет
Цвет: Белый
Коэффициент провисания: Менее 1.8
Прочность на разрыв, фунт / кв. дюйм .: 10,0
Упругость%: более 75%
Компрессионный комплект,
90%, 22 часа, 158 ° F:
Менее 10%

https://foamonline.com/wp-content/uploads/2020/01/Polyurethane-Foam.jpg 467700 FoamOnline /wp-content/uploads/2020/01/foamonline-logo-300×34.png FoamOnline2020-01- 08 05: 21: 062020-10-15 13: 08: 27Rebond Foam

Описание:

Угольная пена используется в основном в таких чехлах, как компьютер, фотоаппарат и пистолет.Угольная пена также используется для упаковки и транспортировки, акустического гашения и звукоизоляции.

Технические характеристики:

— 1, 85245

9024%:

Качество: Среднее
Вес: 1,8 фунта на кубический фут
Плотность фунт на кубический фут:
Структура ячеек: Открытая
Долговечность: Прибл. 6 лет
Цвет: Уголь
Усилие вдавливания, 25%: 85-95
Число ячеек на линейный дюйм: 38 ± 5
207%
Прочность на разрыв, фунт / дюйм.: 220
Clickable: Да
Отскок мяча%: 27 ± 6
Рейтинг воспламеняемости: Соответствует требованиям по воспламеняемости для Cal. Т. 117, FMVSS 302 и NFPA 260, 1989.

https://foamonline.com/wp-content/uploads/2020/01/Charcoal-Foam.jpg 467700 FoamOnline / wp-content / uploads / 2020/01 / foamonline-logo-300×34 .png FoamOnline2020-01-08 05: 20: 322020-10-15 13: 08: 56 Угольная пена

Описание:

Latex Rubber Foam — это первый на рынке неаллергенный тип поролона. и долговечный.Он используется в продуктах высшего класса, включая матрасы, подушки и подушки.

Технические характеристики:

Качество: Отлично
Вес: 5,6 фунта на кубический фут
Диапазоны плотности: 902 фунта³ / фут
Структура ячеек: Открытая
Долговечность: Прибл. На 15 лет .Сухие химикаты или пена.
Опасность возгорания: При воспламенении этот продукт будет гореть и потреблять кислород. Этот продукт может выделять раздражающие и токсичные побочные продукты во время горения. При тушении пожара латексной пены необходимо надевать автономный дыхательный аппарат.

Основная проблема латексной пены для здоровья — это вдыхание паров, которые могут образоваться во время горения.

Примечание: Изделия из латексной пены из натуральной и / или синтетической пены могут содержать каучуки, синтетические каучуки и отвердители для каучуков.

https://foamonline.com/wp-content/uploads/2020/01/Latex-Foam.jpg 467700 FoamOnline / wp-content / uploads / 2020/01 / foamonline-logo-300×34 .png FoamOnline2020-01-08 05: 19: 022020-10-15 13: 10: 47Пенопласт из латексной резины

Описание:

Высокоэластичная пена используется в большинстве видов дорогой мебели, в том числе для яхтинга и катания на лодках. . Из пеноматериала High Resilience Foam получается отличный матрас, так как он очень плавучий и эластичный.

Технические характеристики:

Качество: Отлично
Вес: 3,0 фунта на кубический фут
Плотность фунт на куб. футов: Минимум 2,50
Структура ячеек: Открытая
Долговечность: Прибл. 12 лет
Цвет: 110 — Желтый
ILD / 50 кв. Дюймов при 25% (4 дюйма.): 35% макс.
Фактор поддержки: 2,5
Потери гистерезиса при 25%: 35% макс.
Прочность на разрыв, фунт / линейный дюйм: 1,50 PLI мин.
Предел прочности при растяжении, фунт / кв. дюйм: 12,0 фунт / кв. дюйм мин.
Удлинение,%: 150% мин.
Устойчивость%: 50% мин.
Компрессионный комплект,
90%, 22 ч., 158 ° F:
Менее 10%
Рейтинг воспламеняемости: Соответствует требованиям по воспламеняемости для Cal. Т. 117, FMVSS 302 и NFPA 260, 1989.

https://foamonline.com/wp-content/uploads/2020/01/High-Resilience-Foam.jpg 467700 FoamOnline / wp-content / uploads / 2020/01 / foamonline-logo -300×34.png FoamOnline2020-01-08 05: 18: 242020-10-15 13: 11: 01 Пена высокой упругости

Описание:

Lux Foam, также известная как пена Evlon, очень плавучая и длинная -длительный.Lux Foam — это «хороший» пенопласт, обычно используемый для сидений и матрасов в высококлассной мебели.

Технические характеристики:

Качество: Очень хорошее
Вес: 2,2 фунта на кубический фут
Плотность фунта на кубический фут: 902,10 — 2

260,10 — 2

Структура ячеек: Открытая
Долговечность: Прибл. 6 лет
Цвет: Желтый, Синий
Усилие вдавливания Отклонение, 25%: 41-47
Предел прочности на разрыв, фунт / кв.дюймы: 17,19
Удлинение,%: 207%
Прочность на разрыв, фунт / дюйм: 220
Отскок шарика%: 45 + 5 Clickable : Да
Компрессионный комплект, 22 ч.
при 158 ° F, 50% Максимум:
2,45
Рейтинг воспламеняемости: Соответствует требованиям по воспламеняемости для Cal. Т. 117, FMVSS 302 и NFPA 260, 1989.

https://foamonline.com/wp-content/uploads/2020/01/Lux-Foam.jpg 467700 FoamOnline / wp-content / uploads / 2020/01 / foamonline-logo-300×34 .png FoamOnline2020-01-08 05: 16: 422020-10-15 13: 15: 12Lux Foam

Описание:

Пена высокой плотности — это пена среднего качества промышленного класса. Он продается в основном для матрасов, диванов среднего качества, подушек для стульев, эркеров, лодок и кемпинговых подушек.Пена высокой плотности — это наиболее часто используемый тип пенопласта в мебельной промышленности.

Технические характеристики:

Качество: Среднее
Вес: 1,9 фунта на кубический фут
Плотность фунта на кубический фут: 902 1.60

Минимум 902 1.60

Структура ячеек: Открытая
Долговечность: Прибл. 4 года
Цвет 304 — Светло-коричневый
ILD / 50 кв.дюймов при 25% (4 дюйма): 52-58
Коэффициент провисания: Больше 2,0
Расход воздуха cu. фут / мин .: Макс. 4,0
Прочность на разрыв, фунт / линейный дюйм: Более 2,0
Прочность на разрыв, фунт / кв. дюйм .: 10,0 — 15,0
Удлинение,%: 125-175
Упругость,%: Более 30
Комплект для сжатия,
90%, 22 ч., 158 ° F:
Менее 10%
Рейтинг воспламеняемости: Соответствует требованиям по воспламеняемости для Cal. Т. 117, FMVSS 302 и NFPA 260, 1989.

https://foamonline.com/wp-content/uploads/2020/01/High-Density-Foam.jpg 467700 FoamOnline / wp-content / uploads / 2020/01 / foamonline-logo -300×34.png FoamOnline2020-01-08 05: 15: 532021-05-14 12: 01: 47 Пена высокой плотности

Описание:

Пенополиуретан используется для наполнения, упаковки, транспортировки, наматрасников, собачьи лежаки и костюмы.У толстых кусков через короткое время появятся «тонкие» участки. Пенополиуретан — это пенополиуритан самого низкого качества, который часто не возвращается к своей первоначальной форме со временем.

Технические характеристики:

Качество: Очень низкое
Вес: 1,2 фунта на кубический фут
Плотность фунта на кубический фут: Структура ячеек: Открытая
Долговечность: Прибл.2 года.
Цвет: Белый / бежевый
ILD / 50 кв. Дюймов при 25% (4 дюйма): 33
Прочность на растяжение, фунт / кв. дюйм .: 5,0 — 7,5
Упругость%: Низкая
Компрессионный комплект,
75%, 22 часа, 158 ° F:
Менее 10%
Класс воспламеняемости: Соответствует требованиям по воспламеняемости для Cal. Т. 117, FMVSS 302 и NFPA 260, 1989.

https://foamonline.com/wp-content/uploads/2020/01/Polyurethane-Foam.jpg 467700 FoamOnline / wp-content / uploads / 2020/01 / foamonline-logo-300×34 .png FoamOnline2020-01-08 05: 14: 002020-10-15 13: 12: 45Полиуретановая пена

Пеноматериалы — полиэтилен, сшитый, полиуретан

Пена: полиэтилен, полиуретан

и специальные материалы

Являясь одним из крупнейших производителей пенопласта в Северной Америке, UFP Technologies имеет доступ к материалам от ведущих поставщиков со всего мира.Мы действуем как продолжение ваших собственных исследовательских, инженерных и производственных групп, сотрудничая с вами, чтобы определить лучшие материалы для вашего приложения.

Выбор подходящего вспененного материала для упаковки или компонента продукта может оказаться очень сложной задачей. Мало того, что разные пены имеют разную структуру ячеек и характеристики, пены из одного и того же семейства материалов также могут быть изготовлены с совершенно разными характеристиками плотности и твердости, что сильно повлияет на их характеристики.Мы будем работать с вами, чтобы определить характеристики, необходимые для успеха вашего компонента, упаковки или продукта.

UFP Technologies имеет доступ к целому ряду пенополиэтилена, пенополиэтилена с поперечными связями, пенополиуретана, пенополиуретана с сетчатой ​​структурой и специальных пен:

Полиэтилен

Пенополиэтилен — от упаковки хрупкой электроники до обеспечения комфорта и поддержки спортивных товаров — обладает прочностью, легкостью и характеристиками с закрытыми ячейками, которые вам нужны.Он сочетает в себе отличные демпфирующие и изоляционные свойства с высокой устойчивостью к химическим веществам и влаге. Поскольку сшитый полиэтилен добавляет способность защищать поверхности класса «А», его часто используют при упаковке медицинских устройств и оборудования.

Полиуретан

Это популярное семейство пен идеально подходит для широкого спектра применений, от доставки жидкости в медицинское устройство до фильтрации воздуха в газонокосилке и управления звуком в автомобилях. Пенополиуретан — это эластичный материал с открытыми порами, который обеспечивает превосходную амортизацию и защиту.Пенопласты специального размера с контролируемой пористостью могут иметь сетчатую структуру, обеспечивающую более высокие характеристики растяжения, разрыва и удлинения.

Специальные пены

Практически нет ограничений на типы специальных материалов, с которыми мы работаем, или на творческие способы их комбинирования для обеспечения необходимых вам качеств — антистатических, воздухопроницаемых, проводящих, гидрофильных, рассеивающих статическое электричество и т. Д. Будь то высокопроизводительное приложение или относительно простое, мы найдем подходящий материал для работы.

Пеноматериал

— обзор

2.1 Механические и динамические характеристики ячеистого материала

Пеноматериалы обычно характеризуются высоким соотношением прочности к весу, а также отличными звуко- и теплоизоляционными свойствами по сравнению с другими инженерными материалами. Пены можно разделить на три основных типа, включая двухмерные (2D) соты, трехмерные (3D) с конфигурацией открытых ячеек и трехмерные с конфигурацией закрытых ячеек, как показано на рис.1. Ячейки в пенопластах с открытыми ячейками соединены распорками, а стенки ячеек разрушены, поскольку такая жидкость может проходить через ячейки. С другой стороны, ячейки пенопласта с закрытыми ячейками полностью закрыты стенками ячеек, так что поток жидкости затруднен [19]. Конфигурация с закрытыми ячейками обычно сильнее, чем конфигурация с открытыми ячейками.

Рис. 1. Ячеистая структура пеноматериала (а) закрытые ячейки- (б) открытые ячейки- (в) соты.

Воспроизведено из Hitti, K., 2011. Прямое численное моделирование сложных репрезентативных элементов объема (RVE): создание, разрешение и гомогенизация.

Механический отклик вспененного материала зависит от микроструктуры ячеек, включая размер ячеек и топологию ячеек, свойства объемного материала и относительную плотность вспененного материала [20]. Относительная плотность вспененного материала (ρ *) определяется формулой. (1):

(1) ρ * = ρρB

, где ρ B и ρ — плотности объемного материала, связанного со стенкой ячейки и пеной соответственно. Как правило, пеноматериал с большей относительной плотностью показывает большую механическую прочность, и это можно отнести к большему объему материала внутри пенопласта [21].

Влияние микроструктуры ячеек на поведение пеноматериалов обусловлено тем фактом, что механизм деформации пеноматериала на уровне ячеек определяется изгибом и растяжением стенки ячеек с последующим короблением и разрывом на стадии после выхода пласта [22] . На прочность на изгиб стенки ячеек влияет размер ячейки, при этом меньший размер ячейки показывает более высокую прочность из-за увеличения прочности краев ячейки [23]. Поскольку на механическое поведение ячеистых материалов влияет микроструктура ячеек, морфологические дефекты микроструктуры ячеек, такие как неоднородная толщина стенок ячеек, вариации размеров ячеек, сломанные стенки ячеек, смещения стенок ячеек и недостающие ячейки, имеют значительное влияние. о механическом поведении металлических пен [24].

Пеноматериалы обычно не используются там, где преобладают растяжение и сдвиг. Однако они обычно используются там, где ожидаются сжимающие нагрузки. Наиболее привлекательной особенностью пен является способность подвергаться большой деформации при сохранении низкого постоянного уровня напряжения перед областью уплотнения [22]. Типичная реакция сжатия-деформации вспененного материала, как показано на рис.2, состоит из упругой области, области плато, где напряжение увеличивается медленно, когда ячейки пластически деформируются, и области уплотнения, где нагрузка быстро увеличивается по мере увеличения края ячеек постепенно соприкасаются друг с другом, и материал приобретает объемные свойства.

Рис. 2. Типичная кривая напряжения-деформации сжатия для пеноматериалов.

Наиболее распространенными механическими свойствами пеноматериалов являются напряжение плато (σ P ), модуль упругости (E), предел текучести и деформация уплотнения.

Напряжение плато (σ P ) является функцией относительной плотности пены и определяется уравнением. (2):

(2) σP = C (ρ *) m

, где коэффициенты C и m — параметры материала.

Модуль упругости (E) может быть получен как наклон участка начальной нагрузки кривой, показанной на рис.2. Деформация уплотнения (ε D ) — это деформация, при которой пена полностью раздавливается и наблюдается резкое увеличение наклона кривой зависимости напряжения от деформации. Предел текучести ( Y ) вспененного материала может быть получен с помощью следующего уравнения. (3) разработан Reyes et al. [25].

(3) σY = σP + γεεD + α2ln [11– (εεD) β]

Где γ, α 2 , ε D , β — параметры материала, а ε — эквивалентная деформация.

Среди типов пеноматериалов металлические и полимерные вспененные материалы были предметом многочисленных исследований на ударопрочность.Металлические пены могут быть получены из различных основных металлов, таких как алюминий (Al), магний (Mg), медь (Cu) и титан (Ti). По сравнению с другими металлическими пенами, алюминий был наиболее изученным типом из-за его превосходных характеристик и низкой относительной плотности, которая могла достигать всего 3% от объема материала.

Полимерные (неметаллические) пены низкой плотности широко применялись для обеспечения ударопрочности в автомобильной промышленности из-за их превосходной способности поглощать энергию.Они используются в качестве наполнителя в бамперах и в качестве усиления потолочных и дверных балок для усиления слабых участков конструкции автомобиля и улучшения их реакции на ударные нагрузки [26]. Основное преимущество полимерной пены заключается в том, что характеристики поглощения энергии не зависят от направления нагрузки и, таким образом, она способна очень эффективно поглощать наклонную ударную нагрузку.

Что касается динамического поведения пеноматериалов, динамический отклик ячеистого материала отличается от его квазистатического аналога из-за эффекта скорости деформации [27].Чувствительность клеточного материала к скорости деформации увеличивается с увеличением относительной плотности клеточного материала [28]. Макроскопическая чувствительность ячеистого материала к скорости деформации может быть связана со многими источниками, включая чувствительность к скорости деформации основного материала [29], инерционные эффекты отдельных стенок ячеек [30], влияние давления захваченного воздуха. в сотах [31] и ударно-волновые эффекты, вызывающие динамическую локализацию дробления [30,32,33].

КАК ВЫБРАТЬ ПОДХОДЯЩУЮ ПЕНУ

Пена — один из самых важных элементов проекта обивки, но большинству людей не хватает словарного запаса — или, скорее, правильного понимания словаря — чтобы правильно описать вид пенопласта, который они хотят.Даже дизайнеры и архитекторы могут знать, что им необходимо учитывать плотность пены, но понятия не имеют, как она соотносится с другими характеристиками, такими как твердость и ячеистая структура.

Чтобы помочь вам выбрать правильный вид пены для следующего проекта вашего бизнеса или клиента, мы объяснили различные качества пены и важность каждого из них.

Плотность

Как и в других случаях, плотность пены измеряет массу или количество материала на измеряемый объем или размер.

Однако плотность измеряется по-разному в зависимости от материала. Для пенопласта стандартным является взвешивание блока размером один фут с каждой стороны. Блок, который весит 5 фунтов, будет иметь плотность 5 фунтов.

Плотность пены не связана с ее твердостью, а связана с ее долговечностью и качеством, потому что в определенный объем сжимается больше материала. Это также означает, что более плотные материалы будут весить больше.

Плотность от 1 до 3 фунтов типична для большинства обычных пен, при этом пенопласт более низкой плотности используется для изготовления поделок, транспортировочной пены, наматрасников для гостевых комнат и других легких продуктов.Пенопласт с высокой плотностью имеет плотность от 10 до 15 фунтов и идеально подходит для применений, требующих интенсивного использования, таких как постельное белье, подушки для диванов, сиденья кабины или автомобильные сиденья.

Пена высокой плотности идеально подходит для интенсивного использования, например, для сидения в кабине.

Вес

Поскольку плотность измеряется путем взвешивания кубического фута пены, люди иногда используют термины «вес» и «плотность» как синонимы. По этой причине не следует путать плотность пены (или вес материала) (вес образца в кубических футах) с его общим весом (весом всего куска пены).

Обе цифры важны, но каждая дает разную информацию.

Стойкость

Стойкость пены описывает то, как она ощущается и реагирует на давление и вес. Он измеряется посредством испытания механических характеристик и выражается в единицах, называемых прогибом под нагрузкой вдавливания (ILD) или прогибом усилия вдавливания (IFD).

При испытании используется образец пены размером 15 на 15 на 4 дюйма и измеряется сила в фунтах, необходимая для сжатия материала на 25% (один дюйм) с помощью круглого индентора размером 50 квадратных дюймов.

Например, если давление 40 фунтов необходимо для сжатия материала на один дюйм, ILD пены будет 40.

Результаты испытаний не будут точными, если образец не имеет соответствующих размеров, так как толщина материала влияет на то, какой вес он может выдержать.

Большее давление требуется для сжатия твердой пены и меньшее — для сжатия мягкой пены. Значения ILD от 8 до 70 являются общими для большинства пеноматериалов, а значения от 120 до 150 указывают на очень высокую твердость.

Помните, что твердость не зависит от качества пены, а от плотности зависит. Прочность показывает, как материал ощущается, и дает представление о том, как он выдержит вес в конкретном приложении.

На самом деле твердость и плотность не имеют прямой зависимости. Пена имеет различные химические и структурные составы, поэтому образцы пенопласта с более низкой плотностью могут иметь более высокую ILD (твердость), чем образцы с более высокой плотностью. Рассмотрите каждую метрику отдельно, чтобы выбрать пену, которая является вашим идеалом как по плотности, так и по твердости.

Правильный выбор поролона для будки гарантирует, что она будет работать так же хорошо, как и выглядит.

Пена с открытыми порами и пена с закрытыми порами

Другая характеристика пены связана с ее ячеистой структурой. Пена может быть как с открытыми, так и с закрытыми порами.

Пена с открытыми порами

В пене с открытыми порами стенки ячеек разрушены, что позволяет воздуху проникать в крошечные карманы в материале. Это придает пене с открытыми порами вид губки и создает ощущение мягкости и мягкости. Пенопласт с открытыми порами также имеет тенденцию быть менее плотным и весить меньше, чем пена с закрытыми порами.

Следует иметь в виду, что из-за пористости пены с открытыми порами вода и водяной пар могут легко проникать в нее. Однако пена с открытыми ячейками препятствует росту плесени и не дает усадку, трещин и износ при использовании.

Пенопласт с закрытыми порами

Ячейки пенопласта с закрытыми порами, как вы можете себе представить, закрыты и не связаны друг с другом, поэтому воздух не может их заполнить. Пузырьки газа, которые образуются при расширении и отверждении пены, затем задерживаются в этих ячейках, что обеспечивает пене отличные изоляционные свойства.

В отличие от пены с открытыми порами, пена с закрытыми порами устойчива к воздействию воды и водяного пара. Это делает пену с закрытыми порами хорошим выбором для наружных работ; но в большинстве проектов обивки необходимо использовать пену с открытыми порами из-за ее прочности и мягкости.

Нужна помощь в выборе подходящей пены?

Если вы все еще не знаете, какую пену выбрать для обивки вашего предприятия или клиента, позвоните нам. Мы с радостью объясним ваши варианты и дадим рекомендации — для поролона, ткани и любого другого элемента процесса обивки.

Руководство по материалам из вспененного полиэфира: свойства, типы и применение

Frank Lowe предлагает полный спектр различных вспененных полиэфиров, которые можно вырезать и изготовить по индивидуальному заказу для вашего применения. Узнайте больше о пенополиэфире.

Как ведущий производитель нестандартных материалов, Frank Lowe предлагает множество различных типов вспененного полиэфира, которые можно вырезать и изготовить в соответствии с потребностями вашего приложения. Продолжайте читать, чтобы узнать больше о полиэфирной пене и о том, как Фрэнк Лоу может использовать наш многолетний опыт, чтобы помочь вам исследовать, преследовать и создавать больше.

Характеристики и свойства полиэфирной пены

Некоторые из наиболее желательных атрибутов полиэфирной пены включают:

  • Сжимаемость — она ​​способна сжиматься и возвращаться в исходную форму.
  • Амортизация — благодаря своей сжимаемости вспененный полиэфир обеспечивает отличную амортизацию.
  • Низкая скорость передачи водяного пара — Полиэфир обладает низкой проницаемостью для водяного пара.
  • Гибкость — Полиэфир способен существенно изгибаться, не ломаясь, и его можно легко модифицировать.
  • Сопротивление раздиру — Полиэфир обладает высокой устойчивостью к разрыву, а также высокими растягивающими свойствами.
  • Изоляция — Полиэфир обеспечивает способность предотвращать потерю или увеличение тепла с исключительными изоляционными свойствами.
  • Легкий вес — Легкость полиэфира делает его идеальным для широкого спектра применений.
  • Электрические свойства — Полиуретаны в целом обладают отличными электроизоляционными свойствами.
  • Устойчивость к грибкам, плесени и плесени — Полиэфирная пена способна противостоять росту плесени, плесени и грибка, что делает ее подходящей для тропических сред.Однако есть специальные добавки, которые можно использовать для снижения этой характеристики.
  • Устойчивость к жиру, маслу и воде — поскольку полиэфир не набухает в консистентной смазке или воде, он может прослужить несколько лет в подводных применениях и в морской среде.
  • Устойчивость к истиранию — Полиэфир обладает замечательной стойкостью к истиранию при ударах, что делает его идеальным решением для бамперов и штор, которые могут столкнуться с лобовыми ударами.
  • Термостойкость и низкая теплопроводность. Полиэфирная пена значительно менее восприимчива к накоплению тепла по сравнению с полиэфиром, поэтому она используется в высокоскоростных роликах, где при постоянном отражении тепла выделяется тепло.
  • Гибкость при низких температурах — пенополиэфиры гораздо меньше подвержены влиянию низких температур.
  • Водостойкость и влагостойкость — из-за большой ячеистой структуры полиэфира, он может похвастаться превосходной гидролитической стабильностью.
  • Звукопоглощение — Полиэфирная пена обладает способностью поглощать и демпфировать звуковую энергию.
  • Гашение вибрации — пенополиэфир обладают сильными свойствами гашения вибрации.
  • Экономичные производственные процессы — Полиуретаны, такие как пенополиэфир, достаточно универсальны, чтобы производить большие объемы заказов; одноразовые, одноразовые детали; прототипы деталей и повторные серийные выпуски.
  • Настраиваемый — Полиэфир может быть адаптирован с различными добавками, чтобы сделать материал более подходящим для вашего применения.

Области применения и отрасли полиэфира

Благодаря широкому диапазону требуемых характеристик вспененного полиэфира, он используется в нескольких отраслях и сферах применения.

Пенополиэфир, присущий удобству, делает его идеальным решением для спортивной одежды, а также медицинских устройств . Амортизирующие и упаковочные свойства материала делают его очевидным выбором для множества различных упаковочных приложений .

Большая ячеистая структура пенополиэфира не позволяет им удерживать влагу, способствуя большему потоку воздуха, что позволяет быстро высыхать. Эти характеристики делают его подходящим для множества морских применений, фильтрующих материалов для аквариумов, пены для динамиков, подушек для наружных патио и пены для воздушных фильтров. Дополнительные области применения и применения полиэфирных пен включают:

  • Акустические и тепловые решения
  • Энергетика
  • Швейная промышленность
  • Оборудование для фильтрации и очистки
  • Садоводство и сельское хозяйство
  • Информационно-развлекательные устройства
  • Оргтехника
  • Машины
  • Губки
  • Обработка поверхности
  • И многое другое

Различные типы полиэфирной пены и индивидуальные настройки

Полиэфирная пена производится путем смешивания вспенивателя, полиэфирполиолов и катализатора для создания пенистой, свободно поднимающейся пены, которая быстро затвердевает в течение нескольких минут.В процессе производства пенополиэфира может быть введен ряд различных добавок, чтобы адаптировать материал к вашим точным спецификациям. Некоторые из наиболее распространенных добавок включают:

  • Огнезащитные добавки
  • Антистатические добавки
  • Антистатические добавки
  • Антимикробные добавки
  • И другие

Сетчатые полиэфирные пены

У Фрэнка Лоу, один из самых распространенный тип пенополиэфира, который мы предоставляем, — это сетчатый полиэфир.Этот легкий материал с открытыми порами, со слабым запахом, обычно используется для изготовления продуктов для:

  • протирки,
  • управления жидкостями,
  • звукопоглощения,
  • фильтрации и
  • набивки.

Заказать Вырубные полиэфирные пены

В Frank Lowe мы изготовим высеченные из полиэфирных пеноматериалов бесконечное множество форм и размеров в соответствии с вашими требованиями. Мы предлагаем почти 70-летний опыт и гордимся тем, что являемся ведущим поставщиком компонентов и материалов для высечки из пенополиэфира .

Мы предлагаем полный каталог различных вспененных полиэфиров с добавками или без них и можем предоставить уникальные решения в зависимости от вашего применения. Вы можете выбрать, какой из вспененных полиэфирных материалов будет поставляться в различных формах, например, высечка в рулоне, вырезка поцелуя и т. Д. Просто сообщите нам, что вам нужно, и Фрэнк Лоу предложит решение.

Свяжитесь с Фрэнком Лоу по вопросам высечки полиэфирных компонентов

Эксперты Frank Lowe используют наш многолетний опыт, чтобы найти лучшее решение.Не знаете, какая добавка или плотность будут идеальными для вашего приложения? Без проблем. Мы можем помочь. Лучше всего то, что мы можем выслать вам образцы различных вспененных полиэфиров, чтобы вы могли быть уверены в их эффективности в вашем приложении. Проще говоря, Фрэнк Лоу поможет вам исследовать, преследовать и творить больше с пенополиэфиром.

Свяжитесь с нами сегодня, чтобы узнать больше или запросить образец полиэфирной пены.

Характеристики пены — Ассоциация пенополиуретана

В производстве пеноматериалов для этого используются специальные тесты, терминология и оборудование.Ниже приведены ключевые характеристики производительности и способы их измерения.

ПЛОТНОСТЬ

Плотность — это единица измерения массы на единицу объема. Плотность, измеряемая и выражаемая в фунтах на кубический фут (pcf) или килограммах на кубический метр (кг / м3), является одним из наиболее важных свойств пены. Плотность — это функция химического состава, используемого для производства пены, и добавок, входящих в состав пены. Для целей спецификации рекомендуется использовать плотность полимера пены или плотность материала, образованного строго химическим составом пены без включенных наполнителей или армирующих элементов.Плотность влияет на прочность и поддержку пены. Как правило, чем выше плотность полимера, тем лучше пена будет сохранять свои первоначальные свойства и обеспечивать поддержку и комфорт, для создания которых она была изначально предназначена.

Твердость

Плотность — это показатель ощущения поверхности пены. Он измеряется с использованием силы в фунтах, необходимой для вдавливания образца пены на 25% от его первоначальной высоты. Это измерение называется отклонением от силы вдавливания (IFD). Плотность не зависит от плотности пены, хотя часто считается, что пена с более высокой плотностью тверже.В зависимости от спецификации IFD можно использовать пенопласт с высокой плотностью, который является мягким, или пенопласт с низкой плотностью, который является твердым.

КОЭФФИЦИЕНТ ПОДДЕРЖКИ

Коэффициент поддержки

(также известный как модуль сжатия) оценивает способность пены выдерживать вес. Для количественной оценки фактора поддержки требуется второе измерение IFD, основанное на сжатии образца пены на 65% его высоты. Как правило, чем больше разница между 25% IFD и 65% IFD, тем больше способность пены выдерживать вес.Отношение 65% IFD к 25% IFD называется фактором поддержки пены. Факторы поддержки для пены находятся в диапазоне от 1,5 до 2,6. Чем выше число, тем лучше способность пены обеспечивать поддержку. Пенопласт с более высокими поддерживающими факторами дает ряд преимуществ, например, сиденье не «опускается до дна» на диване или стуле. Можно указать низкий 25% IFD для пены с высоким коэффициентом поддержки, чтобы создать дополнительную мягкость поверхности, не вызывая «опускания» пены при приложении веса.Как правило, чем выше плотность пены, тем лучше коэффициент поддержки.

FLEX FATIGUE (динамическая усталость)

Существует несколько тестов, которые используются для определения прочности пены или того, насколько хорошо пена сохраняет свои первоначальные свойства твердости и высоты. Некоторые из них представляют собой стандартные лабораторные тесты; другие — это индивидуальные тесты, разработанные разными производителями. Но практически все они основаны на сгибании или сжатии пены определенное количество раз и измерении плотности и высоты пены до и после испытаний.При испытании на усталость при изгибе образцы пенопласта могут быть сжаты несколько тысяч раз или многие тысячи раз. Затем измеряется процент потерь IFD. Более короткие тесты дают представление о том, какую твердость пена может потерять при первоначальном использовании, в то время как более длительные тесты предоставляют данные об общей стойкости пены.

РОЛИКОВЫЕ НОЖНИЦЫ

Особенно серьезным испытанием на усталость при изгибе является испытание на сдвиг роликами, при котором прокатный груз проходит по образцу пенопласта с двух направлений, обычно в течение примерно 25 000 циклов.Этот тест обеспечивает комбинацию сжатия и истирания и помогает определить, как пена выдержит особенно сложные применения, такие как коммерческая мебель или ковровые подушки. Опять же, измеряются потери IFD, и можно проводить несколько измерений в разные периоды времени после того, как пена имела шанс «восстановиться».

ПРОЧНОСТЬ РАЗРЫВА

Гибкие пенополиуретаны также проверяются на их способность противостоять разрыву и растрескиванию. Это важно в тех случаях, когда приходится часто обращаться с пеной, например, при обивке.Испытания для определения этих свойств включают прочность на разрыв, сопротивление разрыву и удлинение. Они определяют способность пены растягиваться или сгибаться без разрыва. Эти измерения долговечности особенно важны для пен, которые содержат большое количество наполнителей, таких как пены, модифицированные горением. Эти добавки могут увеличить склонность пен к разрыву или растрескиванию. При указании пен, содержащих добавки, рекомендуется проанализировать испытания на предел прочности на разрыв, разрыв и удлинение, чтобы выяснить, может ли пена потребовать особого обращения.

УСТОЙЧИВОСТЬ

Упругость — это показатель эластичности поверхности или «упругости» пены. Устойчивость может быть связана с комфортом. Упругость обычно измеряется путем падения стального шара на поролоновую подушку и измерения высоты отскока мяча. Упругость пены колеблется от около 20 процентов отскока мяча до 80 процентов отскока. Более высокая упругость пенопласта часто означает, что подушки сиденья дивана, например, лучше «ощущаются на ощупь» или на поверхности. Пены также могут иметь очень низкую упругость для определенных применений.Вязкоупругие изделия обычно обладают очень низкой упругостью.

ГИСТЕРЕЗИС

Гистерезис — это еще один лабораторный тест, используемый для определения способности пены сохранять свои первоначальные свойства твердости. Гистерезис измеряют, сначала вдавив образец пены на 25 процентов и измерив твердость, затем вдавив его на 65 процентов и снова измерив твердость, и, наконец, уменьшив вдавливание до уровня 25 процентов, не позволяя пене полностью расслабиться. Без полного устранения вмятин пена не восстановит всю свою первоначальную 25-процентную твердость, но процент твердости, которую она восстанавливает, считается хорошим показателем общей прочности подушки.

В отличие от других испытаний на долговечность, гистерезис можно быстро выполнить на различных образцах пенопласта. Роликовые сдвиги — это особенно жесткое испытание на прочность пены. Испытания на прочность на разрыв позволяют анализировать как долговечность, так и способность пенопласта обрабатываться во время сборки изделия. Хороший рейтинг гистерезиса также влияет на то, насколько легко встать с дивана или другого предмета мебели, предназначенного для того, чтобы люди могли глубоко сидеть на сиденье.

ПОТОК ВОЗДУХА

Расход воздуха — важный диагностический тест.Характеристики пены оптимизируются при максимальном потоке воздуха. Это указывает на то, что ячейки открыты и настолько гибки, насколько должны быть. Хорошее практическое правило для потока воздуха в гибких пенополиуританах — не менее 2,0 кубических футов в минуту (куб. Футов в минуту).

Обзор стандартов ASTM и пеноматериалов можно найти в этом видео из серии учебных курсов PFA «Введение в промышленность по производству гибких пенополиуретанов»: