Как рассчитать объем воды в системе отопления, радиаторах, трубах.
Расчет объема воды (теплоносителя), заполняющего систему отопления, будет одним из первых при выборе котла.
Это необходимо для понимания какой оптимальный объем может прогреть ваш котел или другой источник тепла. Параметры труб очень сильно влияют на данный показатель: при наличии насоса вы смело можете выбрать трубу меньшего диаметра и установить больше секций отопления.
Если выбрать трубы большого диаметра, то при максимальной мощности котла можно получить недогрев теплоносителя: большой объем воды будет раньше остывать, прежде чем дойдет до крайних точек системы отопления. Что в свою очередь приведет к дополнительным финансовым расходам.
Приблизительный расчет объема воды в системе отопления производится из соотношения 15 л воды на 1 кВт мощности котла.
Чтобы определить какой объем воды нужен для системы отопления дома, рассмотрим простой пример.
Мощность котла 4 кВт, тогда объем системы равен 4 кВт*15 литров = 60 литров. Но необходимо учитывать размеры и количество секций радиаторов при этом.
Если у вас дом на 4 комнаты, то это не значит, что надо ставить по 12-15 секций в каждую: у вас будет очень жарко, котел будет работать неэффективно. Если комнат больше, то и экономить на радиаторах не стоит: 1 современная секция эффективно отдает тепло для 2…2,5 м2 площади.
Как просто определить какой мощности нужен котел для системы отопления дома?
Формулы для расчета объема жидкости (воды или другого теплоносителя) в системе отопления
Объем воды в системе отопления можно рассчитать как сумма составляющих:
V =V(радиаторов)+V(труб)+V(котла)
Объем системы должен учитывать объем воды в трубах, котле и радиаторах. В расчет объема теплоносителя не входит объем расширительного бака. Объем бачка учитывается при расчете критических состояний работы системы (когда вода будет поступать в него при нагреве).
Формула для расчета объема жидкости в трубе:
V (объем) = S (площадь сечения трубы) * L (длина трубы)
Важно! Размеры могут отличаться у различных производителей, в зависимости от типа трубы, материала, ее технологии производства. Поэтому расчет удобнее вести по реальному внутреннему диаметру трубы, который проще промерить с помощью инструмента. Как правило, такой расчет необходимо выполнять больше специалисту, когда система отопления разветвленная и сильно протяженная.
Сравнение видов водяного отопления дома (с естественной и принудительной циркуляцией).
Объемы воды для различных элементов системы отопления
Объем воды (литры) в секции радиатора
Материал/тип радиатора | Габариты*: высота×ширина, мм | Объем, л |
Алюминий | 600×80 | 0,450 |
Биметалл | 600×80 | 0,250 |
Современная чугунная батарея (плоский) | 580×75 | 1,000 |
Чугунная батарея старого образца () | 600×110 | 1,700 |
*ВАЖНО! Габариты в таблице даны ориентировочно.
В большинстве моделей современных производителей они составляют ±20 мм по ширине, высота радиаторов отопления может варьироваться от 200 до 1000 мм.
Объем сильно отличающихся по высоте радиаторов можно приблизительно рассчитать из данной таблицы по правилу пропорции: необходимо объем разделить на высоту и умножить после на высоту выбранной модели. Если система отопления протяженная, то лучше уточнить параметры объема у производителя.
Объем воды в 1 погонном метре трубы
- ø15 (G ½») — 0,177 литра
- ø20 (G ¾») — 0,310 литра
- ø25 (G 1,0″) — 0,490 литра
- ø32 (G 1¼») — 0,800 литра
- ø40 (G 1½») — 1,250 литра
- ø50 (G 2,0″) — 1,960 литра
Также читайте обзор какие трубы лучше всего выбрать.
Основные размеры внутренних диаметров труб (взят ряд значений от 14 до 54 мм), с которыми может столкнуться потребитель.
Внутренний диаметр, мм | Объем жидкости в 1 м погонного трубы, л | Внутренний диаметр, мм | Объем жидкости в 1 м погонного трубы, л |
14 | 0,1539 | 30 | 0,7069 |
15 | 0,1767 | 32 | 0,8042 |
16 | 0,2011 | 34 | 0,9079 |
17 | 0,2270 | 36 | 1,0179 |
18 | 0,2545 | 38 | 1,1341 |
19 | 0,2835 | 40 | 1,2566 |
20 | 0,3142 | 42 | 1,3854 |
21 | 0,3464 | 44 | 1,5205 |
22 | 0,3801 | 46 | 1,6619 |
23 | 0,4155 | 48 | 1,8096 |
24 | 0,4524 | 50 | 1,9635 |
26 | 0,5309 | 52 | 2,1237 |
28 | 0,6158 | 54 | 2,2902 |
Расчет расширительного бака
Основные правила:
- Объем расширительного бака должен быть не менее 10% от объема системы отопления. Данного объема будет достаточно для расширения теплоносителя при нагреве в пределах 45…80 °С.
- Для больших протяженных систем, с высокой температурой теплоносителя, запас по объему должен быть не менее 80% от объема системы отопления. Это актуально для котлов с максимальной температурой теплоносителя выше 80…90 °С, паровых систем отопления от печей.
- Объем расширительного бака с предохранительным клапаном может составлять 3-5% от объема системы отопления. Но при этом важно контролировать его работу: при срабатывании клапана необходимо пополнять систему водой.
- При расчете необходимо учитывать давление в системе. В большинстве случаев для одно и двухэтажных коттеджей оно составляет 1,5…2 атмосферы. Масса готовых баков рассчитаны на данные показатели с запасом. При проектировании системы отопления большого объема, с повышенными характеристиками давления в коммуникациях (для высотных зданий), необходимо учитывать данный параметр.
- Учитывать вид теплоносителя при выборе – обязательно. Чем легче жидкость в системе – тем больший расширительный бак ей требуется.
Сравнение: Какой котел выбрать для отопления дома? Достоинства и недостатки.
Виды теплоносителей
- Вода. Самый простой и доступный ресурс. Может использоваться в любых системах отопления. В сочетании с полипропиленовыми трубами – практически вечный теплоноситель.
- Антифриз. Используется для наполнения систем нерегулярно отапливаемых зданий.
- Спиртосодержащие жидкости. Дорогой вариант заполнения системы отопления. Качественные препараты содержат не менее 60% спирта, порядка 30% воды, часть объема занимают другие добавки. Смеси воды с этиловым спиртом с различным процентным содержанием. Незамерзающая жидкость (до -30°С при содержании спирта не менее 45%), но опасна: может гореть, сам этил является ядом для человека.
- Масло. Как теплоноситель сегодня используется в отдельных приборах отопления, но в системах отопления от него отказываются: дорого и тяжело эксплуатировать систему, опасно технологически (необходим долгий разогрев теплоносителя до температуры 120°С и выше). Преимущество – действительно долго остывает, поддерживая температуру в помещении, но основной недостаток – дороговизна теплоносителя.
Расчет объема воды в системе отопления
Расход воды в централизованных системах отопления рядовыми пользователями не учитывается. Но знать объем системы отопления, которая создается для оснащения отдельной квартиры (дома) необходимо. Эти данные помогут точнее определить несколько важных эксплуатационных параметров, о которых будет рассказано далее.
Для чего нужен расчет количества воды в системе отопления
При установке соответствующего оборудования в загородные частные дома многие хозяева предпочитают использовать специальные жидкости.
Качественный антифриз, со специальными добавками, предотвращает возникновение коррозийных процессов, что повышает долговечность металлических труб и других компонентов инженерной системы. Он не превращается в лед при низких температурах.
Это свойство пригодится при несанкционированном отключении оборудования, в иных аварийных ситуациях. Но такая жидкость стоит дороже воды, поэтому необходим точный расчет потребностей.
Второй задачей является уточнение объема емкости расширительного бака. Если она будет недостаточной в закрытых системах, то устройство не будет выполнять полноценно свои функции по компенсации расширения жидкости при нагреве.
Как определить количество воды экспериментально, сделать расчет
Самым простым способом узнать, сколько понадобится жидкости для заполнения системы, является опыт. После подключения дома нового отопительного оборудования открывается вентиль для их заполнения. Нужное значение будет получено, как результат показаний счетчика расхода воды. Второй вариант – обратное действие. Можно производить слив из системы, используя ведро, или другую емкость с известным объемом.
Понятно, что подобные операции допустимы только при наличии дома установленного оборудования. В действительности посчитать придется заранее, чтобы правильно определиться с параметрами соответствующего проекта. Далее будет рассмотрена правильная последовательность действий, которая поможет рассчитать объем теплоносителя:
- Выясняется количество жидкости, которое вмещает котел. Эти данные указываются в техническом паспорте на соответствующее изделие. Устройства проточного типа экономичнее. Но те, в которых используются накопительные емкости, способны быстро обеспечить потребителей горячей водой. В некоторых моделях котлов, работающих на твердом топливе, соответствующий объем достигает 50-ти литров.
- Далее суммируются аналогичные характеристики радиаторов отопления. Как правило, самые крупные – чугунные радиаторы. Для заполнения одной секции такого прибора может потребоваться не менее полутора литров жидкости.
- Емкость обвязки считают только с учетом данных по трубам. Чтобы произвести расчет используется следующая формула: V (объем жидкости для заполнения трубопровода) = П (3, 14 –число «Пи») х R 2 (радиус трубы во второй степени) х L (длина трубопровода).
- Последнее действие – суммирование имеющихся величин.
Чтобы правильно рассчитать внутренний объем труб надо использовать только сопоставимые величины. Точный радиус вычисляется с использованием вычитания двойной ширины стенок. Приведем пример, который основан на следующих исходных данных:
- Длина труб: 12 метров.
- Диаметр (наружный): 24 мм.
- Толщина стенок : 2 мм.
Вначале надо рассчитать внутренний радиус: R = 24 — (2х2)/2 =10 мм.
Теперь можно использовать приведенную выше формулу: V = 3,14 х 10 2 /1000 х 12 = 3,768 литра. К этому значению прибавляют объемы котла и радиаторов отопления.
Какой должна быть величина емкости расширительного бака
Как правило, рассчитать точно эту величину надо, если предполагается создание дома отопительной системы закрытого типа. Чтобы получить искомое значение применяют следующую формулу: VR (объем расширительного бака) = (VO (общий объем, который рассчитывается по рассмотренной выше методике) х KR (коэффициент расширения жидкости)) / KE (коэффициент эффективности). KR принимается для воды равным 0,04 (антифриз – 0,044). KE – это показатель, который вычисляют с использованием формулы: KE = (PM (максимальное давление в системе) – PN (номинальное давление, при котором происходит наполнение бака))/ (PM+1).
Таким образом, чтобы выяснить количество незамерзающей жидкости для заполнения отопительной системы надо сложить все перечисленные выше объемы:
- котла;
- батарей;
- трубопровода;
- расширительного бака.
Как рассчитать объём воды в трубе системы отопления, и не только.
Опубликовано: 28 декабря 2012 г.
Здравствуйте! Для того, чтобы правильно спроектировать систему отопления, нужно иметь о ней как можно больше исходной информации: площадь помещений, объём помещений, материал из которого изготовлены стены, степень теплоизоляции и т. д. Я хочу обратить Ваше внимание на один из таких факторов, как объём воды в трубах системы отопления. Как рассчитать объём воды в трубе, ведь для того, чтобы правильно подобрать мощность котла, необходимо обязательно знать объём воды в системе отопления, плюс, объём воды в котле!
Чтобы справиться с этой задачей нам нужно знать сколько метров трубы в системе отопления, причём каждого диаметра, т. е., сколько трубы диаметром 20 мм., сколько трубы диаметром 25 мм., и т. д.
Для чего это нужно? Сейчас Вы сами всё поймёте.
Взгляните на картинку снизу. В этой таблице представлены основные используемые в бытовых системах отопления диаметры труб, а так же объём воды в этих трубах.
Как не трудно догадаться, остаётся количество метров, каждого диаметра, помножить на объём воды, согласно таблицы. Затем полученный результат суммируем, и прибавляем объём воды в котле.
В паспорте каждого котла, имеются данные о максимальном объёме воды в системе отопления, который котёл может нагревать без потери мощности. Например: ваш котёл, по паспорту имеет мощность — 20 Квт., и допустимый объём теплоносителя — 180 литров. После подсчётов, у Вас получился объём воды в трубах равный — 220 литров. Что из этого следует? А то что если у вас площадь помещений например 120-150 кв. м., то котёл скорее всего справится с нагревом системы, а если площадь 180-200 кв. м., то всё, — зимой, в более сильный мороз придётся мёрзнуть. В таком случае вам нужен котёл большей мощности, например — 24 Квт. (Надеюсь вы понимаете, что эти цифры условные!)
Надеюсь, при расчёте системы отопления, эта информация поможет Вам избежать ненужных проблем!
Хочу добавить, что на картинке, объём воды в секции радиатора, имеется в виду чугунный радиатор. В алюминиевых радиаторах, в одной секции объём жидкости составляет приблизительно 300гр. , в зависимости от моделей.
Эту табличку можете скачать с моего сайта по этой ссылке:Таблица колличества воды, в одном метре трубы, по диаметрам
Ну вот и всё! Пользуйтесь на здоровье.
Как увеличить объем воды в системе отопления
Сегодня существует множество систем отопления и практически каждой системой можно обеспечить эффективное отопление дома. Но эффективность зависит от многих факторов: какие доступны энергоносители, что из себя представляет сам отапливаемый дом и другое. Затем надо посчитать теплопотери дома. И только после расчетов можно окончательно понять, насколько система будет полезна в наших конкретных условиях
По сути, что такое эффективное отопления дома в нашем случае? Это когда затраты на отопление меньше чем у соседа в разы и при этом ваша система выполняет свою функцию на 100 %, и у Вас в доме тепло и уютно.
Так же необходимо проработать эксплуатацию и ремонт системы отопления. Иначе ни о какой эффективности речи и быть не может.
Комбинация систем отопления
Еще одним аспектом эффективного отопления дома является комбинация систем отопления. Опять же под эффективностью можно понимать как экономию, так и создание уюта и комфорта в вашем жилище.
Например, у вас смонтирована система радиаторного отопления. А вам ту приспичило смонтировать дополнительно систему теплого пола. Так сказать для комфорта.
Будет ли такая комбинированная система эффективной? Если посмотреть со стороны уюта и комфорта, то да, система отопления дома эффективна, так как достигнут определенный тепловой эффект.
Если посмотреть со стороны экономии, то думаю что, система отопления станет менее эффективной, так как добавляется система теплого пола, а это дополнительные расходы.
Другой вопрос неэффективности отопления — это когда выбирается неверная система отопления дома. Например, необходимо смонтировать радиаторы. А заказчикам пришлось в голову смонтировать теплые полы. А ведь было все продумано именно под радиаторы. В итоге тепла не хватает, углы промерзают, надо монтировать дополнительно радиаторную систему отопления и так далее.
И, конечно же, совсем неэффективно — это когда по всем расчетам и возможностям необходимо монтировать, например, систему обогрева полом (теплые полы), а заказчики монтируют радиаторы.
Так же я хочу упомянуть, что современное эффективное отопление дома включает в себя еще и приготовление горячей воды. Это опять же рассчитывается в комплексе и дает потрясающую экономию.
Повышение эффективности путем утепления
Есть еще вариант с утеплением дома. У вас, например, радиаторное отопление. И по сути своей не эффективно, так как приходится греть потолок. Но вот Вы утеплили свой дом, и вуаля — система радиаторного отопления стала эффективней.
В другом случае у вас смонтирована гравитационная, открытая система отопления и работает самотеком.
Уменьшение теплоносителя
По всем параметрам система считается неэффективной, так как в такой системе большой объем теплоносителя, который надо нагреть и поддерживать температуру. Но вот вы пригласили грамотного сантехника и он из вашей гравитационной системы сделал закрытую систему с возможностью принудительной циркуляции. И даже в этом случае система становиться эффективней на 20-30 процентов.
Итак, для того что бы система отопления дома была эффективной, нужно чтобы количество теплоносителя в ней было как можно меньше и чтобы при этом система отопления обогревала ваш дом на ваших условиях.
И если сегодня посмотреть на представленные системы отопления домов, то можно выделить несколько систем, которые подойдут под эффективное отопление дома.
Радиаторная система
Так как сегодня больше всего смонтировано радиаторов, с них и начнем. Например, у Вас система радиаторного отопления с чугунными радиаторами. Неэффективно. Что делать, что бы сделать систему более эффективной? Конечно, поменять радиаторы. И чем объем теплоносителя в радиаторе меньше, тем лучше.
Самое простое поменять чугунные радиаторы на алюминиевые. Самое идеальное поменять на медно-алюминиевые радиаторы и так далее. Так же можно поменять котел на более современный и экономичный. Вы в итоге получите более эффективное отопление дома.
Помимо замены котла можно добавить другой энергоноситель или даже тепловой насос.
Теплый пол
Но если говорить о том, какое сегодня эффективное отопление дома, то безусловно на первый план выходит система отопления полом или система теплого пола.
Эффективность достигается за счет того, что для работы системы необходима более низкая температура теплоносителя чем, например, для работы системы радиаторного отопления.
Системы теплого пола очень гибки в проектировании и монтаже. Системы теплого пола не занимают пространство в помещении. Системы теплого пола подходят для любого интерьера и решают помимо отопления массу других задач. Об этих задачах я вам расскажу в следующих статьях.
Если все сделать правильно, то системы теплого пола экономят до 75-ти процентов затрат на отоплении. Вот это я понимаю эффективное отопление дома.
Спасибо, что прочитали эту статью. Делитесь этой статьей в комментариях, ставьте лайки и пишите комментарии на тему, что нужно сделать, что бы поднять эффективность вашей системы отопления?
Любая отопительная система имеет ряд важных характеристик – номинальную тепловую мощность, расход топлива и объем компонентов. Вычисление последнего показателя требует внимательного и комплексного подхода. Как сделать корректный расчет объёмов для отопления: воды, баков, теплоносителя и других компонентов системы?
Необходимсоть вычисления отопления
Сначала следует определиться с актуальностью расчета объема воды в системе отопления или этого же показателя для батарей и расширительного бака. Ведь можно установить эти компоненты без сложных операций, руководствуясь только личным опытом и советами профессионалов.
Работа любой системы отопления сопряжена с постоянным изменением показателей теплоносителя – температуры и давления в трубах. Поэтому расчет отопления по объему здания позволит правильно укомплектовать теплоснабжение, исходя из характеристик дома. Кроме этого следует учитывать прямую зависимость эффективности работы от текущих паромеров. Так как рассчитать объем воды в системе отопления можно самостоятельно – эту процедуру рекомендуется выполнять во избежание появления следующих ситуаций:
- Неправильный фактический тепловой режим работы, который не соответствует расчетному;
- Неравномерное распределение тепла по отопительным приборам;
- Возникновение аварийных ситуаций. Ведь как рассчитать объем расширительного бака для отопления, если не будет известен общая вместимость трубопроводов и батарей.
Для минимизации появления этих ситуаций следует своевременно рассчитать объем системы отопления и ее компонентов.
Вычисления параметров теплоснабжения выполняются еще перед монтажными работами. Они служат основой для подбора комплектующих.
Расчет объема теплоносителя в трубах и котле
Отправной точкой для вычисления технических характеристик компонентов является расчет объем воды в системе отопления. Фактически она является суммой вместимости всех элементов, начиная от теплообменника котла и заканчивая батареями.
Как рассчитать объем системы отопления самостоятельно, без привлечения специалистов или использования специальных программ? Для этого понадобиться схема расположения компонентов и их габаритные характеристики. Общая вместимость системы будет определяться именно этими параметрами.
Объём воды в трубопроводе
Значительная часть воды располагается в трубопроводах. Они занимают большую часть в схеме теплоснабжения. Как рассчитать объем теплоносителя в системе отопления, и какие характеристики труб нужно знать для этого? Важнейшей из них является диаметр магистрали. Именно он определит вместимость воды в трубах. Для вычисления достаточно взять данные из таблицы.
Диаметр трубы, мм | Вместимость л/п.м. |
20 | 0,137 |
25 | 0,216 |
32 | 0,353 |
40 | 0,555 |
50 | 0,865 |
В отопительной системе могут быть использованы трубы различных диаметров. В особенности это касается коллекторных схем. Поэтому объем воды в системе отопления вычисляется по следующей формуле:
Vобщ=Vтр1*Lтр1+ Vтр2*Lтр2+ Vтр2*Lтр2…
Где Vобщ – общая вместимость воды в трубопроводах, л, Vтр – объем теплоносителя в 1 м.п. трубы определенного диаметра, Lтр – общая протяженность магистрали с заданным сечением.
В сумме эти данные позволят рассчитать большую часть объема системы отопления. Но помимо труб есть и другие компоненты теплоснабжения.
У пластиковых труб диаметр вычисляется по размерам внешних стенок, а у металлических – по внутренним. Это может существенно для тепловых систем с большой протяженностью.
Расчет объема котла отопления
Корректный объем котла отопления можно узнать только из данных технического паспорта. Каждая модель этого отопительного прибора имеет свои уникальные характеристики, которые зачастую не повторяются.
Напольный котел может иметь большие габариты. В особенности это касается твердотопливных моделей. По факту теплоноситель занимает не весь объем котла отопления, а лишь небольшую его часть. Вся жидкость располагается в теплообменнике – конструкции, необходимой для передачи тепловой энергии от зоны сгорания топлива воде.
Если инструкция от отопительного оборудования была утеряна – для просчетов может быть взята ориентировочная вместимость теплообменника. Она зависит от мощности и модели котла:
- Напольные модели могут вмещать от 10 до 25 литров воды. В среднем твердотопливный котел мощностью 24 кВт содержит в теплообменнике около 20 л. теплоносителя;
- Настенные газовые менее вместительны – от 3 до 7 л.
Учитывая параметры для расчета объема теплоносителя в системе отопления вместимостью теплообменника котла можно пренебречь. Этот показатель варьируется от 1% до 3% от общего объема теплоснабжения частного дома.
Без периодической очистки отопления уменьшается сечение труб и проходной диаметр батарей. Это сказывается на фактической вместимости отопительной системы.
Расчет объёма расширительного бака отопления
Для безопасной работы отопительной системы необходима установка специального оборудования – воздухоотводчика, спускного клапана и расширительного бака. Последний предназначен для компенсации теплового расширения горячей воды и уменьшения критического давления до нормальных показателей.
Бак закрытого типа
Фактический объем расширительного бака для системы отопления – величина не постоянная. Это объясняется его конструкцией. Для закрытых схем теплоснабжения устанавливают мембранные модели, разделенные на две камеры. Одна из них заполнена воздухом с определенным показателем давления. Он должен быть меньше критического для отопительной системы на 10% -15%. Вторая часть заполняется водой из патрубка, подключенного к магистрали.
Для расчета объема расширительного бака в отопительной системе нужно узнать коэффициент его заполнения (Кзап). Эту величину можно взять из данных таблицы:
Помимо этого показателя потребуется определить дополнительные:
- Нормированный коэффициент теплового расширения воды при температуре +85°С, Е – 0,034;
- Общий объем воды в отопительной системе, С;
- Начальное (Рмин) и максимальное (Рмакс) давление в трубах.
Дальнейшие вычисления объема расширительного бака для системы отопления выполняются по формуле:
Если в теплоснабжении используется антифриз или другая незамерзающая жидкость – значение коэффициента расширения будет больше на 10-15%. Согласно этой методике можно с большой точность рассчитать вместимость расширительного бака в отопительной системе.
Объем расширительного бака не может входить в общий теплоснабжения. Это зависимые величины, которые рассчитываются в строгой очередности – сначала отопление, а уже потом расширительный бак.
Открытый расширительный бачок
Для вычисления объема открытого расширительного бака в системе отопления можно воспользоваться менее трудоемкой методикой. К нему предъявляются меньшие требования, так как фактически он необходим для контроля уровня теплоносителя.
Главной величиной является температурное расширение воды по мере повышения ее степени нагрева. Этот показатель равен 0,3% на каждые +10°С. Зная общий объем отопительной системы и тепловой режим работы можно вычислить максимальный объем бака. При этом следует помнить, он может быть заполнен теплоносителем только на 2/3. Предположим, что вместимость труб и радиаторов составляет 450 л, а максимальная температура равна +90°С. Тогда рекомендуемый объем расширительного бака вычисляется по следующей формуле:
Vбак=450*(0,003*9)/2/3=18 литров.
Полученный результат рекомендуется увеличить на 10-15%. Это связанно в возможными изменениями общего расчет объема воды в системе отопления при установке дополнительных батарей и радиаторов.
Если открытый расширительный бак выполняет функции контроля уровня теплоносителя – максимальный уровень его заполнения определяется установленным дополнительным боковым патрубком.
Расчёт объёма радиаторов и батарей отопления
Для выполнения точного вычисления необходимо знать объём воды в радиаторе отопления. Этот показатель напрямую зависит от конструкции компонента, а также его геометрических параметров.
Также как и при вычислении объема отопительного котла, жидкость заполоняет не весь объем радиатора или батареи. Для этого в конструкции есть специальные каналы, по которым протекает теплоноситель. Корректное вычисление объёма воды в радиаторе отопления может быть выполнено только после получения следующих параметров прибора:
- Межосевое расстояние между прямыми и обратным трубопроводами в батареи. Оно может составлять 300, 350 или 500 мм;
- Материал изготовления. В чугунных моделях наполнение горячей водой намного больше, чем в биметаллических или алюминиевых;
- Количество секций в батареи.
Лучше всего узнать точный объём воды в отопительном радиаторе из технического паспорта. Но если такой возможности нет – можно взять в расчет примерные величины. Чем больше межосевое расстояние у батареи – тем больший объем теплоносителя в ней поместится.
Межосевое расстояние | Чугунные батареи, объем л. | Алюминиевые и биметаллические радиаторы, объем л. |
300 | 1,2 | 0,27 |
350 | 0,3 | |
500 | 1,5 | 0,36 |
Для расчета общего объема воды в системе отопления с панельными металлическими радиаторами следует узнать их тип. Их вместимость зависит от количества нагревательных плоскостей – от 1 до 2-х:
- У 1 типа батареи на каждые 10 см приходится 0,25 объема теплоносителя;
- Для 2 типа этот показатель увеличивается до 0,5 л на 10 см.
Полученный результат необходимо умножить на количество секций или общую протяженность радиатора (металлического).
Для правильного расчета объема отопительной системы отопления с дизайнерскими радиаторами нестандартной формы нельзя применять вышеописанную методику. Их объем моно узнать только у производителя или его официального представителя.
Расчет объема теплового аккумулятора
В некоторых отопительных системах устанавливаются вспомогательные элементы, которые также частично могут заполняться теплоносителем. Наиболее вместительным из них является тепловой аккумулятор.
Проблема в вычислении общего объема воды в отопительной системе вместе с этим компонентом заключается в конфигурации теплообменника. Фактически тепловой аккумулятор не заполняется горячей водой из системы – он служит для ее нагрева от имеющейся в нем жидкости. Для корректного расчета нужно знать конструкцию внутреннего трубопровода. Увы, но производители не всегда указывают тот параметр. Поэтому можно воспользоваться примерной методикой вычислений.
Перед установкой теплового аккумулятора его внутренний трубопровод заполняется водой. Ее количество рассчитывается самостоятельно и учитывается при вычислении общего объема отопления.
Если отопительная система модернизируется, устанавливаются новые радиаторы или трубы – необходимо выполнить дополнительный перерасчет ее общего объема. Для этого можно взять характеристики новых приборов и вычислить их вместимость по вышеописанным методикам.
В качестве примера можно ознакомиться с методикой расчета расширительного бака:
Столкнувшись с такой проблемой, каждый, прежде всего, должен понять следующее: общий показатель находится в зависимости от общего объема всех элементов, входящих в отопительную систему дома.
Любая из них к тому же работает в условиях, когда то и дело изменяются такие показатели теплоносителя, как давление и нагрев.
Какие факторы влияют на расчеты
Когда выбираешь котел, также неизбежно занимаешься определением объема теплоносителя, которому предстоит заполнить отопительную систему. Без этого никак не обойтись. Ведь есть необходимость понять, какого объема хватит для того, чтобы оптимальным образом прогреть котел.
Отметим, что и характеристики труб очень важны. Они сказываются на общем показателе. Если есть помпа, то без всяких сомнений можно подобрать трубу, у которой маленький диаметр, и произвести установку секций отопления. Желательно, чтобы их было, как можно больше.
ВАЖНО! Тот, кто выбирает трубы повышенного диаметра, должен учитывать, что при даже максимальной работе котла в этом случае теплоноситель может быть нагрет недостаточно. Значительный объем воды просто остывает перед тем, как добраться до отдаленных точек системы. Понятно, что в данной ситуации понадобятся дополнительные денежные затраты.
Суммарный объем определяется так, чтобы для удовлетворительного нагрева имеющихся комнат было достаточно выбранной мощности котла. Когда показатели допустимой мощности котла превышены, то прибор сильно изнашивается. Ко всему увеличивается потребление электричества.
Если нужен приблизительный расчет объема теплоносителя в системе, то можно учесть такое соотношение: на каждый 1 кВт мощности котла — 15 литров воды. В виде учебного примера давайте определим, сколько носителя необходимо системы, если мощность котла составляет 4 кВт. Ответ: 60 литров! Однако при этом необходимо учитывать следующее: каково количество секций радиаторов, каковы их размеры и использованные материалы.
Представим, что в доме четыре комнаты. Сколько секций нужно поставить? Больше 10-ти секций для каждой комнаты? Это слишком много! В комнате будет жарко, а котел заработает неэффективно. Исходите из того, что одна секция современного радиатора способна эффективно передавать тепло для площади в 2-2,5 кв. метра.
ВАЖНО! Характеристики для теплоснабжения всегда вычисляют перед тем, как приступают к монтажным операциям. Они важны, когда подбираешь комплектующие.
Итак, объем теплоносителя в отопительной системе в целом определяют в качестве суммирования некоторых составляющих:
V = V (радиаторов) + V (труб) + V (котла), где V – это объем.
Иными словами, общий объем определяется с учетом объема носителя в котле, трубах и радиаторах. В расчет не включают параметры расширительного бака. Его необходимо учитывать, только когда рассчитываешь потенциальные критические состояния работы системы.
Есть отдельная формула, по которой рассчитывают объем носителя непосредственно в трубе:
V (объем) = S (площадь сечения трубы) х L (длина трубы)
ВАЖНО! Обращаем внимание, что характеристики у различных производителей отличаются. Это зависит от таких факторов, как тип трубы, технология ее выполнения и материал, из которого она изготовлена. Вот почему специалисты рекомендуют выполнять расчеты по реальному внутреннему диаметру трубы.
В большинстве случаев расчеты ведут специалисты. Тому есть простое объяснение. Обычно протяженность отопительной системы слишком велика. Она также сильно разветвленная.
Расчет объемов для различных типов радиаторов
Для определения показателей одного радиатора необходимо воспользоваться данными, которые всегда указываются в техническом паспорте изделия. Если его нет под рукой по каким-либо причинам, то можно использовать усредненные параметры.
Далее предлагаем вам примерные параметры по объему носителя (в литрах) в одной секции радиатора в соответствии с его материалом и типом, а также его примерные габариты в мм (высота/ширина):
– биметаллические (600х80) – 0,25 л
– алюминиевые (600х80) – 0,45 л
– чугунные старого образца (600х110) – 1,7 л
– современные чугунные (плоские, 580х75) – 1 л
Львиная доля моделей всех производителей имеет ±20 мм колебания по ширине. Что касается высоты отопительных радиаторов, то она варьируется от 200 до 1000 мм.
Теперь маленький учебный пример, чтобы оценить, как верно рассчитывают значение. Например, есть пять алюминиевых батарей. В каждой – по 6 секций. Расчет таков: 5 х 6 х 0,45 = 13,5 литра.
ВАЖНО! Чтобы правильно рассчитать объем отопительной системы, у которой дизайнерские радиаторы нестандартной формы, использовать методику, о которой мы только что рассказали, нельзя. В данном случае нужно обратиться к производителю или его официальному дилеру. Только они могут указать объем.
Объем теплоносителя в трубопроводе
Диаметр магистрали нужно считать важнейшим критерием. С его помощью можно установить, какова вместимость воды в трубах. Скажем, если диаметр трубы 20 мм, то вместимость будет составлять 0,137 литра на метр погонный. Если диаметр 50 мм, то вместимость будет составлять 0,865 литра на метр погонный.
В отопительной системе допускается применение труб самых разных диаметров. Особенно это характерно для коллекторных схем. Вот почему объем жидкости в отопительной системе определяют отдельно для каждого участка. А потом все необходимо будет суммировать.
ВАЖНО! Если у вас труба из пластика, то диаметр в ней определяют по размерам внешних стенок. Если из металла, то диаметр в ней определяют по размерам внутренних стенок. Для тепловых систем, у которых большая протяженность, это бывает существенно.
Как рассчитать объем расширительного бака?
Основные правила:
– На объем бака должно приходиться от 10 процентов объема системы отопления. Этого вполне хватит, чтобы при нагреве расширить теплоноситель в пределах 45-80°С.
– Если мы говорим о протяженных системах, да еще когда температура теплоносителя существенная, то запас должен составлять не менее 80 процентов от объема всей отопительной системы. Это очень важно для тех котлов, у которых максимальная температура теплоносителя превышает 80-90°С. Это актуально и для паровых отопительных систем от печей.
– 3-5% от объема отопительной системы. Именно таким может быть объем расширительного бака с предохранительным клапаном. Очень важно осуществлять контроль над его работой. Как только срабатывает клапан, систему сразу же пополняют жидкостью.
ВАЖНО! Всегда нужно учитывать давление в системе, когда ведешь расчеты. Как правило, для коттеджей в один или два этажа оно достигает 1,5-2 атмосферы. Учтите, что большинство готовых баков рассчитано именно на указанные показатели. Да еще с запасом.
Но если проектируешь отопительную систему, у которой повышенные объем и характеристики давления (например, для многоэтажных домов), то такой параметр обязательно нужно учитывать. Как обязательно учитывать и вид теплоносителя, когда выбираешь бак. Правило простое: чем легче жидкость в системе – тем крупнее расширительный бак для нее нужен.
О видах теплоносителей
Этим и можно объяснить тот факт, что цена на него очень высока. Она не каждому по карману. И потому такую жидкость применяют преимущественно для того, чтобы обогревать строения, у которых площади невелики.
ВОДА, конечно, является доступным ресурсом. Она подойдет для применения в любых отопительных системах. Она практически может стать вечным теплоносителем, если мы говорим о том, что она сочетается с трубами из полипропилена.
Перед тем, как заполнять системы водой, необходимо предварительно подготовить ее. Жидкость необходимо отфильтровать. Это делают, чтобы избавиться от содержащихся в ней минеральных солей. Обычно в таких случаях применяют специализированные химические реагенты. Их можно без проблем купить в магазине. Также из воды в системе обязательно удаляют весь воздух. Если этого не сделать, то снизится эффективность обогрева помещений.
АНТИФРИЗ применяют для того, чтобы наполнять системы зданий, которые отапливаются нерегулярно.
ЖИДКОСТИ, СОДЕРЖАЩИЕ СПИРТ, чтобы заполнять отопительные системы, может позволить себе не каждый. Они дорогие. Что касается качества препаратов, то в них обычно содержится, как минимум, 60 процентов спирта и примерно 30 процентов воды. На иные добавки приходится незначительная доля объема. Смеси воды с этиловым спиртом могут иметь различное процентное содержание.
ВАЖНО! Незамерзающий теплоноситель (при температуре до -30°С) при доле спирта не менее 45 процентов опасна. Он способна воспламениться. Ко всему этил – это яд, который несет явную угрозу человеку.
МАСЛО в качестве теплоносителя в настоящее время применяют лишь в некоторых приборах отопления. Однако в отопительных системах его не применяют. Покупка его обходится дорого. Это основной недостаток масла.
К тому же с маслом тяжело эксплуатировать систему. Оно опасно технологически и долго разогревается до температуры 120°С и выше. А достоинство масла в том, что оно остывает не сразу. Этот процесс длится долго. В результате можно длительный период поддерживать температуру в помещении.
Подведем итоги
Рассчитать, какая емкость рабочей жидкости необходима в системе, да еще без малейших погрешностей, сможет не каждый. Вот почему некоторые, когда не хотят производить подсчеты, делают так. Поначалу они заполняют отопительную систему на 90 процентов. Потом проверяют, как она работает. А затем стравливают воздух, который скопился, и продолжают заполнять систему.
Когда отопительная система эксплуатируется, то уровень теплоносителя снижается, поскольку идут конвекционные процессы. Во время этого процесса котел теряет производительность. Вот почему в резерве должна находиться еще одна емкость, содержащая рабочую жидкость. Так можно будет отследить убыль теплоносителя. Если появится необходимость его пополнить, то это можно будет сделать легко.
Как рассчитать объём воды в трубах
Сколько воды расходуется по статье «общедомовые нужды»
при сбросе стояков?
Как выбрать гидроаккумулятор?
Сколько антифриза покупать для заполнения системы отопления коттеджа?
ПАМЯТКА
как рассчитать объем воды в трубе
Объем воды в трубах вычисляется как сумма произведений объемов воды в метре трубы каждого диаметра на количество метров труб данного диаметра.
Объем гидроаккумулятора для системы отопления должен составлять 10-12 % объема всей воды в системе. Последняя цифра складывается из объема воды во всех радиаторах отопления, плюс объема воды в котле отопления, плюс объем воды в трубах для отопления.
Объем воды в радиаторах складывается из объема воды в каждой секции радиатора, помноженном на количество секций. Это значение указывается в технических паспортах на радиаторы. Смотрим технический паспорт.
Объем воды в котле отопления указывается в паспорте. Этот объем полезно знать также при спуске воды из отдельных частей системы отопления.
Таблица объема воды
в неармированных и армированных алюминием полипропиленовых трубах:
Номинальный размер (внешний диаметр), мм
|
Внутреннее сечение, мм кв.
|
Объем воды в метре трубы, литры
|
Внутренний диаметр, мм
|
Соответствующий им диаметр стальных дюймовых труб, дюймы
|
20
|
136,7
|
0,137
|
13,2
|
1/2
|
25
|
216,3
|
0,216
|
16,6
|
3/4
|
32
|
352,8
|
0,353
|
21,2
|
1
|
40
|
555,4
|
0,555
|
26,6
|
1 1/4 (дюйм с четвертью)
|
50
|
865,3
|
0,865
|
33,2
|
1 1/2
|
63
|
1384,7
|
1,385
|
42
|
2
|
75
|
1962,5
|
1,963
|
50
|
2 1/2
|
90
|
2826
|
2,826
|
60
|
3
|
110
|
4206,2
|
4,206
|
73,2
|
|
Таблица объема воды в стальных трубах:
Номинальный размер, дюймы
|
Внешний диаметр, мм
|
Внутренний диаметр, мм
|
Внутреннее сечение, мм
|
Объем воды в метре трубы, литры
|
1/4
|
13,5
|
9,5
|
29,83
|
0,03 (30 миллилитров)
|
3/8
|
17
|
13
|
133
|
0,133
|
1/2 (полдюйма)
|
21,3
|
16,3
|
209
|
0,209
|
3/4
|
26,8
|
21,8
|
373
|
0,373
|
1
|
33,5
|
27,9
|
611
|
0,611
|
1 1/4 (дюйм с четвертью)
|
42,3
|
36,7
|
1057
|
1,057
|
1 1/2
|
48
|
42
|
1385
|
1,385
|
2
|
60
|
54
|
2289
|
2,289
|
Объем воды в стальных трубах больше количества воды в соответствующих пластиковых трубах Внутренняя поверхность пластиковых труб гладкая, а стальных труб шероховатая. В результате пластиковые трубы (как и медные) меньшего диаметра пропускают столько же воды, сколько и стальные трубы, имеющие больший внутренний диаметр.
Генеральный директор
ООО «ОСТРОУМОВ» Д.Ю. Остроумов
Как рассчитать отопление частного дома | Danfoss
В ходе расчета вырисовывается понятная схема расположения всех элементов отопительного оборудования, а также составляется смета расходов, необходимых на его покупку и монтаж.
Алгоритм расчета отопления коттеджа
Расчет системы отопления начинается с уточнения параметров дома и отапливаемых помещений:
-
общая площадь коттеджа; -
число этажей; -
количество отапливаемых помещений на каждом этаже, включая цокольный.
Предстоит также определить, где будет располагаться котел: в подвале или на первом этаже.
На втором этапе составляется поэтажный план системы отопления. Для всех комнат каждого этажа определяются виды и количество приборов отопления (например, один или два радиатора и система «теплый пол»). Соответственно, в проект включаются коллекторы радиаторов и теплых полов, отвечающие за правильное распределение теплоносителя.
Для каждого отопительного прибора можно предусмотреть отдельные параметры подключения:
-
боковое или нижнее, левое или правое расположение подключения; -
разводка выполнена в полу, стене или коробе; -
диаметр патрубков; -
материал и диаметр фитингов.
Если планируется оснастить отопление системой автоматизации, следует уточнить вид термостата для управления приборами, тип клапана и конфигурацию обвязки радиатора.
Для управления теплым полом можно выбрать механический или программируемый регулятор как проводного, так и беспроводного типа. В зависимости от площади отапливаемого помещения, напольная система включает в себя одну, две или более петель (каждая петля рассчитана на то, чтобы обогревать до 15 м2 площади).
Основной элемент системы умного отопления – котел, работающий на газе, твердом или жидком топливе. Если предполагается, что он будет отвечать дополнительно за горячее водоснабжение, в расчет включается второй контур (подготовки горячей воды). Дополнительно агрегат оснащается теплообменником, трехходовым вентилем переключения режимов, циркуляционным насосом и автоматикой.
Для того чтобы рассчитать отопление в доме и ускорить подготовку проекта отопительного оборудования, используйте конфигуратор, разработанный специалистами компании Danfoss. Расчет отопления дома в этой программе позволяет точно определить комплектность, расположение и стоимость оборудования.
Объем радиатора отопления – как правильно рассчитать
Теплоноситель в системе отопления – это не только водопроводная вода, которая закачивается внутрь за счет своего давления. К примеру, в загородных поселках нередко воду заливают в отопление ведрами, доставая ее из колодца или близлежащего водоема. Или вообще используют незамерзающие жидкости. Второй вариант используется нечасто только из-за дороговизны материала, но тот, кто планирует проживать на даче или загородном коттедже только по выходным и праздникам, пользуется именно незамерзающими жидкостями, чтобы каждый раз не сливать теплоноситель из отопительной системы. Поэтому расчет объема теплоносителя – важный показатель, в который входит объем радиатора отопления, объем труб и отопительного котла.
Емкость котла указана в паспорте изделия. Этот показатель будет в основном зависеть от мощности агрегата и его размеров. Объем труб можно определить из специальных таблиц, которых в Интернете большое количество. Мы тоже предлагаем такую таблицу:
Диаметр (мм) | Объем одного погонного метра (л) |
15 | 0,177 |
20 | 0,31 |
25 | 0,49 |
32 | 0,8 |
40 | 1,25 |
50 | 1,96 |
Чтобы определить общий объем необходимого теплоносителя, который будет помещаться только в трубы, необходимо измерить их общую длину и умножить на показатель из таблицы. Если вы пользуетесь проектом для сооружения отопительной системы, то все необходимые расчеты и замеры можно провести по нему.
Рассчитываем объем радиатора
Итак, остается только определить объем воды в радиаторе отопления. Как это можно сделать проще всего? Советуем опять-таки воспользоваться таблицами. Обращаем ваше внимание, что производители предлагают на рынке различные модели отопительных приборов. В модельной линейке могут оказаться радиаторы не только разной конструкции, но и разных размеров. В плане размерного ряда в основе лежит межосевое расстояние, то есть, это расстояние между осями двух коллекторов (верхнего и нижнего). К тому же в настоящее время производители предлагают приборы на заказ, в которых используются индивидуальные эскизы и рисунки. С определением емкости этих батарей все намного сложнее.
Но давайте вернемся к данному показателю и покажем усредненные величины для приборов отопления. Берем модели вида 500 (межосевое расстояние).
- Чугунный радиатор ЧМ-140 старого образца – 1,7 литра объем одной секции.
- То же самое только нового образца – 1л.
- Стальной панельный прибор тип 11 (то есть, одна панель) – 0,25 л на каждые 10 см длины прибора. Измерение типа в количественном соотношении увеличивает объем теплоносителя на 0,25 л. То есть, тип 22 – 0,5 л, тип 33 – 0,75 л.
- Алюминиевая батарея – 0,45 л на каждую секцию.
- Биметаллический – 0,25 л.
В данном списке нет стальных трубчатых радиаторов. Даже приблизительный объем у этой модели определить будет непросто. Дело все в том, что производители используют для их изготовления трубы различных диаметров, отсюда и невозможность подобрать хотя бы усредненный вариант. Поэтому рекомендуем обращать внимание на паспортные данные, где показатель объема должен быть указан.
Соотношение по типажу
Расчет объема опытным путем
А если такового показателя нет, что делать? Тогда рекомендуем найти объем батареи отопления практическим путем. Как это можно сделать:
- Устанавливаете три заглушки на радиатор.
- Ставите его на торец так, чтобы открытый патрубок находился сверху.
- Берете мерную емкость, к примеру, ведро или ковшик (то есть вы должны знать объем этой емкости, пусть даже приблизительный).
- Теперь заливаете вручную в батарею обычную воду, при этом считаете, сколько ведер вошло в отопительный прибор. Умножая количество на объем ведра, вы получаете объем теплоносителя в приборе.
Обратите внимание, что этот способ определения объема прибора отопления может быть использован для всех типов и моделей. Если в паспортных данных емкость прибора не указана, и таблицу определения вы не нашли, то опытным путем своими руками можно достаточно точно определить данный показатель.
Теперь хотелось бы затронуть тему, как влияет емкость батареи отопления на общую теплоотдачу отопительной системы. Здесь зависимость не прямая, а косвенная. Поясним суть дела. Многое будет зависеть от того, как сам теплоноситель будет двигаться по контурам: под действием физических законов (то есть, с естественной циркуляцией) или под искусственным давлением (под действием циркуляционного насоса).
Если выбран первый вариант, то оптимальное решение – радиаторы с большим объемом. Если второй, то тут разницы никакой нет. Давление создаст условия, при которых теплоноситель будет распределяться равномерно по всей сети, а, значит, равномерно распределиться и температура.
Подбор размера нового водонагревателя
Водонагреватель подходящего размера удовлетворит потребности вашего дома в горячей воде, работая при этом более эффективно. Поэтому перед покупкой водонагревателя убедитесь, что он подходящего размера.
Здесь вы найдете информацию о том, как определить размеры этих систем:
- Бесконтактные водонагреватели или водонагреватели по запросу
- Солнечная водонагревательная система
- Накопительные водонагреватели и водонагреватели с тепловым насосом (с баком).
Для определения размеров комбинированных систем водяного отопления и отопления помещений, в том числе некоторых систем с тепловыми насосами, а также водонагревателей без резервуара и косвенных водонагревателей, проконсультируйтесь с квалифицированным подрядчиком.
Если вы еще не решили, какой тип водонагревателя лучше всего подходит для вашего дома, узнайте больше о выборе нового водонагревателя.
Определение размеров водонагревателей без резервуаров или по запросу
Водонагреватели без резервуаров или по запросу рассчитаны на максимальное повышение температуры, возможное при заданном расходе. Следовательно, чтобы определить размер водонагревателя по запросу, вам необходимо определить скорость потока и повышение температуры, необходимое для его применения (весь дом или удаленное приложение, например, просто ванная) в вашем доме.
Сначала укажите количество устройств для горячей воды, которые вы планируете использовать одновременно. Затем сложите их скорости потока (галлонов в минуту). Это желаемый расход для водонагревателя по запросу. Например, предположим, что вы ожидаете одновременного использования крана горячей воды с расходом 0,75 галлона (2,84 литра) в минуту и насадки для душа с расходом 2,5 галлона (9,46 литра) в минуту. Расход воды через водонагреватель по запросу должен быть не менее 3,25 галлона (12.3 литра) в минуту. Для уменьшения расхода установите арматуру на слабый расход воды.
Чтобы определить повышение температуры, вычтите температуру входящей воды из желаемой выходной температуры. Если вы не знаете иначе, предположите, что температура поступающей воды составляет 50ºF (10ºC). В большинстве случаев вам нужно нагреть воду до 120ºF (49ºC). В этом примере вам понадобится водонагреватель по запросу, который повышает температуру на 70ºF (39ºC) для большинства применений. Для посудомоечных машин без внутреннего нагревателя и для других подобных целей вам может потребоваться вода, нагретая до 140ºF (60ºC).В этом случае вам потребуется повышение температуры на 90ºF (50ºC).
Водонагреватели, пользующиеся наибольшим спросом, рассчитаны на различные температуры на входе. Как правило, повышение температуры воды на 70ºF (39ºC) возможно при расходе 5 галлонов в минуту через газовые водонагреватели и 2 галлона в минуту через электрические. Более высокая скорость потока или более низкая температура на входе иногда могут снизить температуру воды в самом дальнем кране. Некоторые типы безбаквальных водонагревателей имеют термостатическое управление; они могут изменять свою температуру на выходе в зависимости от расхода воды и температуры на входе.
Расчет солнечной системы водяного отопления
Расчет солнечной системы водяного отопления в основном включает определение общей площади коллектора и объема хранилища, которые вам понадобятся для удовлетворения 90–100% потребностей вашего домохозяйства в горячей воде в летний период. Подрядчики солнечной системы используют рабочие листы и компьютерные программы для определения системных требований и размеров коллектора.
Коллекторная площадь
Подрядчики обычно следуют норме около 20 квадратных футов (2 квадратных метра) коллекторной площади для каждого из первых двух членов семьи.На каждого дополнительного человека добавляйте 8 квадратных футов (0,7 квадратных метра), если вы живете в районе Солнечного пояса США, или 12–14 квадратных футов, если вы живете на севере Соединенных Штатов.
Объем хранения
Небольшого (от 50 до 60 галлонов) резервуара для хранения обычно достаточно для одного-двух-трех человек. Средний (80 галлонов) резервуар для хранения хорошо подходит для трех-четырех человек. Большой резервуар подходит для четырех-шести человек.
Для активных систем размер солнечного накопителя увеличивается с размером коллектора — обычно 1.5 галлонов на квадратный фут коллектора. Это помогает предотвратить перегрев системы при низкой потребности в горячей воде. В очень теплом, солнечном климате некоторые эксперты предлагают увеличить это соотношение до 2 галлонов хранилища на 1 квадратный фут площади коллектора.
Другие расчеты
Дополнительные расчеты, связанные с определением размеров вашей солнечной системы водяного отопления, включают оценку солнечного ресурса вашей строительной площадки и определение правильной ориентации и наклона солнечного коллектора.Посетите страницу солнечных водонагревателей, чтобы узнать больше об этих расчетах.
Определение размеров водонагревателей с накопительным и тепловым насосом (с баком)
Для правильного определения размеров накопительного водонагревателя для вашего дома, включая водонагреватель с тепловым насосом с баком, используйте номинал первого часа водонагревателя. Рейтинг за первый час — это количество галлонов горячей воды, которое водонагреватель может подавать в час (начиная с бака, полного горячей воды). Это зависит от емкости бака, источника тепла (горелка или элемент) и размера горелки или элемента.
На этикетке EnergyGuide рейтинг первого часа указан в верхнем левом углу как «Емкость (оценка за первый час)». Федеральная торговая комиссия требует наличия маркировки EnergyGuide на всех новых обычных водонагревателях, но не на водонагревателях с тепловым насосом. В документации по продукту от производителя также может быть указана оценка за первый час. Ищите модели водонагревателей с рейтингом в первый час, который соответствует в пределах 1 или 2 галлона вашей потребности в час пик — дневной пиковой потребности в горячей воде для вашего дома за 1 час.
Чтобы оценить вашу потребность в час пик:
- Определите, в какое время дня (утро, полдень, вечер) вы используете больше всего горячей воды в своем доме. Помните о количестве людей, живущих в вашем доме.
- Используйте таблицу ниже, чтобы оценить максимальное использование горячей воды в течение этого одного часа дня — это ваша потребность в час пик. Примечание: таблица не оценивает общее ежедневное потребление горячей воды.
Пример рабочего листа показывает общую потребность в 36 галлонов в час пик.Следовательно, этому домашнему хозяйству потребуется модель водонагревателя с мощностью от 34 до 38 галлонов в первый час.
Использование | Среднее количество галлонов горячей воды на одно потребление | Время использования в течение 1 часа | Галлонов, используемых за 1 час | ||
---|---|---|---|---|---|
Душ | 10 | × | = | ||
Бритье (. 05 галлонов в минуту) | 2 | × | = | ||
Мытье посуды вручную или приготовление пищи (2 галлона в минуту) | 4 | × | = | ||
Автоматическая посудомоечная машина | 6 | × | = | ||
Стиральная машина | 7 | × | = | ||
Общая максимальная нагрузка в час | = |
3 душа | 10 | × | 3 | = | 30 |
1 побрить | 2 | 1 | = | 2 | |
1 мытье посуды вручную | 4 | × | 1 | = | 4 |
Пиковая нагрузка в час | = | 36 |
На основе информации из калькулятора затрат на энергию Федеральной программы управления энергетикой.
* Приведенная выше таблица основана на стандартном использовании без каких-либо мер по экономии воды.
Как рассчитать правильный расход для любой гидравлической системы —
В сфере водяного отопления и охлаждения регулярно используются определенные формулы. Важный из них касается системы, которая использует воду как средство обеспечения комфорта в галлонах в минуту. Вода — это путь, по которому тепло распределяется из котельной туда, где находятся люди.t ° F
Формула указывает на температуру воды 60 ° F. Однако, поскольку вода 60 ° F слишком холодная для системы водяного отопления и слишком теплая для системы охлажденной воды, для расчета правильного расхода формула должна основываться на более подходящих температурах воды для каждого типа системы, например удельная теплоемкость воды или изменения плотности, возникающие при изменении температуры воды. Кроме того, объем воды меняется, когда она становится горячее или остывает. Как видно из следующего примера, различия настолько минимальны, что стандартная формула отлично работает для всех наших систем отопления и охлаждения. Тогда T будет:
8,04 x 60 x 1,003 x 20 = 9677 BTUH
Чистый эффект незначителен, но есть еще один фактор, который необходимо учитывать для полной оценки. При повышении температуры воды она становится менее вязкой, и поэтому падение давления в ней уменьшается. Когда вода циркулирует при температуре 200 ° F, соответствующее падение давления или «потеря напора» составляет около 80% воды при температуре 60 ° F для типичных небольших гидравлических систем. При расчете с использованием системной кривой расход увеличивается примерно в 10 раз.5%. Теперь вы можете умножить новую рассчитанную теплопередачу на процент увеличения потока:
1,105 x 9677 = 10 693 BTUH
Как вы можете видеть, что касается теплопередачи, простой подход «круглого числа» приведет к расчетным потокам, очень близким к потокам «с поправкой на температуру», при условии, что результаты подхода «круглого числа» не будут скорректированы из исходная основа 60 ° F как для теплопередачи, так и для перепада давления в трубопроводе. Факторы «плюс» и «минус» очень тесно уравновешивают друг друга.
В этой статье представлена точная формула для расчета расхода
в галлонах в минуту (галлонов в минуту) для жидкостного отопления
и систем охлаждения.
Выбор подходящего циркуляционного насоса
галлон в минуту играет важную роль в обеспечении того, чтобы ваша система отопления работала должным образом. Вам нужен циркуляционный насос подходящего размера, чтобы иметь возможность отводить тепло от котла и доставлять его в систему, где находятся люди.При выборе подходящего циркуляционного насоса вам необходимо не только знать правильный галлон в минуту, но также необходимо знать необходимое падение давления для циркуляции необходимого количества галлонов в минуту.
Когда вода течет по трубам и излучению, она «трется» о стенку трубы, вызывая сопротивление трения. Это сопротивление может повлиять на производительность системы обогрева за счет уменьшения желаемого расхода циркулирующего потока, тем самым уменьшая теплопроизводительность системы. Зная, каким будет это сопротивление, вы можете выбрать циркуляционный насос, который сможет преодолеть падение давления в системе.
Обычно в современных системах мы используем «футы на голову» для описания количества энергии, необходимого для того, чтобы требуемый галлон в минуту был доставлен в систему. Существуют таблицы размеров труб, которые рассчитывают падение давления в футах потери энергии для любого расхода через трубу любого размера. Существуют стандартные методы работы с трубопроводами, в которых промышленность ссылается на ограничение количества галлонов в минуту для данного размера трубы. Это основано на двух причинах:
1. Проблемы скорости (насколько быстро вода движется внутри трубы), которые могут создавать проблемы с шумом, а в экстремальных условиях — проблемы с эрозией.
2. Требуемая потеря напора может стать настолько большой, что необходимая производительность НАПОР циркулятора делает выбор системы очень «недружественным», что может привести к проблемам с регулирующим клапаном и шумом скорости. Промышленным стандартом является выбор трубы с сопротивлением трению от 1 до 4 на каждые 100 футов трубы.
Bell & Gossett’s System Syzer помогает определять
галлон в минуту (галлонов в минуту).
Кстати, Bell & Gossett уже более 50 лет предоставляет инструмент для индустрии гидроники под названием System Syzer.Этот инструмент очень полезен для расчета галлонов в минуту, правильного размера трубы для поддержки галлонов в минуту и соответствующих потерь давления и скорости для любого применения.
Если у вас есть какие-либо вопросы или комментарии, напишите мне по адресу [адрес электронной почты защищен], подпишитесь на меня в Twitter по адресу @Ask_Gcarey или позвоните мне по телефону FIA 1-800-423-7187. ICM
Система водяного отопления — Процедура проектирования
При проектировании системы водяного отопления может использоваться процедура, указанная ниже:
- Рассчитайте теплопотери в помещениях
- Рассчитайте мощность котла
- Выберите блоки нагревателя
- Выберите тип, размер и режим работы циркуляционного насоса
- Составить схему трубопровода и рассчитать размеры труб
- Расчет расширительного бака
- Расчет предохранительных клапанов
1.Расчет потерь тепла
Рассчитайте потери тепла при передаче через стены, окна, двери, потолки, полы и т. Д. Кроме того, необходимо рассчитать потери тепла, вызванные вентиляцией и проникновением наружного воздуха.
2. Мощность котла
Мощность котла может быть выражена как
B = H (1 + x) (1)
, где
B = мощность котла (кВт)
H = общие тепловые потери (кВт)
x = запас на нагрев — обычно используются значения в диапазоне 0. От 1 до 0,2
Подходящий котел необходимо выбрать из производственной документации.
3. Выбор комнатных обогревателей
Номинальные характеристики радиаторов и комнатных обогревателей можно рассчитать как
R = H (1 + x) (2)
, где
R = рейтинг обогреватели в помещении (Вт)
H = потери тепла из помещения (Вт)
x = запас на обогрев помещения — общие значения в диапазоне 0.От 1 до 0,2
Нагреватели с правильными характеристиками должны быть выбраны из производственной документации.
4. Подбор насосов
Производительность циркуляционных насосов можно рассчитать как
Q = H / (h 1 — h 2 ) ρ (3)
где
Q = объем воды (м 3 / с)
H = общие тепловые потери (кВт)
h 1 = энтальпия потока воды (кДж / кг) (4 . 204 кДж / кг. o C при 5 o C, 4,219 кДж / кг. o C при 100 o C )
h 2 = энтальпия возвратной воды (кДж / кг)
ρ = плотность воды на насосе (кг ( 3) можно приблизить к
Q = H / 4.185 (t 1 -t 2 ) (3b)
где
t 1 = температура подачи ( o C)
t = температура возврата ( o C)
Для циркуляционных систем низкого давления — LPHW напор от 10 до 60 кН / м 2 и сопротивление трению основной трубы от 80 до 250 Н / м 2 на метр труба обычная.
Для циркуляционных систем с высоким давлением — HPHW напор от 60 до 250 кН / м 2 и сопротивление трению основной трубы от 100 до 300 Н / м 2 на метр трубы.
Циркуляционная сила в гравитационной системе может быть рассчитана как
p = hg (ρ 1 — ρ 2 ) (4)
, где
p = давление циркуляции в наличии (Н / м 2 )
h = высота между центром котла и центром радиатора (м)
g = ускорение свободного падения = 9.81 (м / с 2 )
ρ 1 = плотность воды при температуре подачи (кг / м 3 )
ρ 2 = плотность воды при температуре возврата (кг / м 3 )
5. Определение размеров труб
Полная потеря давления в системе трубопроводов горячей воды может быть выражена как
p t = p 1 + p 2 (5)
где
p t = общая потеря давления в системе (Н / м 2 )
p 1 = основной потеря давления из-за трения (Н / м 2 )
p 2 = незначительная потеря давления из-за фитингов (Н / м 2 )
м В качестве альтернативы основная потеря давления из-за трения может быть выражена как
p 1 = il (6)
, где
i = сопротивление трению основной трубы на длину трубы (Н / м 2 на метр трубы)
l = длина трубы (м)
Значения сопротивления трению для фактических труб и объемного расхода можно получить из специальных таблиц, составленных для труб или трубок.
Незначительную потерю давления из-за фитингов, таких как изгибы, колена, клапаны и т.п., можно рассчитать как:
p 2 = ξ 1/2 ρ v 2 (7)
или как выражается как «напор»
h потери = ξ v 2 /2 g (7b)
где
ξ = коэффициент малых потерь
= потеря давления (Па (Н / м 2 ), psi (фунт / фут 2 ))
ρ = плотность (кг / м 3 , снаряды / фут 3 )
v = скорость потока (м / с, фут / с)
h потеря = потеря напора (м, фут)
g = ускорение свободного падения ( 9.81 м / с 2 , 32,17 фут / с 2 )
6. Расширительный бак
Когда жидкость нагревается, она расширяется. Расширение воды, нагретой от 7 o C до 100 o C , составляет приблизительно 4% . Чтобы избежать расширения, создающего давление в системе, превышающее расчетное давление, обычно расширяющуюся жидкость направляют в резервуар — открытый или закрытый.
Открытый расширительный бак
Открытый расширительный бак применим только для систем горячего водоснабжения низкого давления — LPHW.Давление ограничено самым высоким расположением бака.
Объем открытого расширительного бачка должен быть вдвое больше предполагаемого объема расширения в системе. Приведенная ниже формула может использоваться для системы горячего водоснабжения с нагревом от 7 o C до 100 o C (4%):
V t = 2 0,04 V w (8 )
где
V т = объем расширительного бака (м 3 )
V w = объем воды в системе (м 3 )
Закрытый расширительный бак
В закрытом расширительном баке давление в системе частично поддерживается сжатым воздухом. Объем расширительного бака можно выразить как:
V t = V e p w / (p w — p i ) (8b)
где
V т = объем расширительного бака (м 3 )
V e = объем, на который увеличивается содержание воды (м 3 ) 9403
p w = абсолютное давление резервуара при рабочей температуре — рабочая система (кН / м 2 )
p i = абсолютное давление холодного резервуара при наполнении — нерабочая система ( кН / м 2 )
Расширяющийся объем может быть выражен как:
V e = V w (ρ i — ρ w ) / ρ w (8c)
где
V w = объем воды в системе (м 3 )
= плотность холодной воды при температуре наполнения (кг / м 3 )
ρ w = плотность воды при рабочей температуре (кг / м 3 )
Рабочее давление системы — p w — должно быть таким, чтобы рабочее давление в наивысшей точке системы соответствовало температуре кипения на 10 o C выше рабочей температуры.
p w = рабочее давление в наивысшей точке
+ разница статического давления между наивысшей точкой и резервуаром
+/- давление насоса (+/- в зависимости от положения насоса)
7. Выбор предохранительных клапанов
Предохранительные клапаны для систем с принудительной циркуляцией (насос)
Настройки предохранительного клапана = давление на выходной стороне насоса + 70 кН / м 2
Предохранительные клапаны для систем самотечной циркуляции
Настройки предохранительного клапана = давление в системе + 15 кН / м 2
Чтобы предотвратить утечку из-за ударов в системе, обычно настройка составляет не менее 240 кН / м 2 .
Процесс нагрева паром — расчет нагрузки
Обычно паровой нагрев используется для
- изменения температуры продукта или жидкости
- поддержания температуры продукта или жидкости
Преимущество пара заключается в большом количестве передаваемой тепловой энергии. Энергия, выделяемая при конденсации пара в воду, находится в диапазоне 2000-2250 кДж / кг (в зависимости от давления) — по сравнению с водой с 80-120 кДж / кг (с разницей температур 20-30 o С ).
Изменение температуры продукта — нагрев продукта паром
Количество тепла, необходимое для повышения температуры вещества, может быть выражено как:
Q = mc p dT (1)
где
Q = количество энергии или тепла (кДж)
м = масса вещества (кг)
c p = удельная теплоемкость вещества (кДж / кг o C) — Свойства материалов и теплоемкость обычных материалов
dT = повышение температуры вещества ( o C)
Имперские единицы? — Проверьте конвертер единиц!
Это уравнение можно использовать для определения общего количества тепловой энергии для всего процесса, но оно не учитывает скорость передачи тепла , которая составляет:
- количество тепловой энергии, переданной в единицу времени
В приложениях без проточного типа нагревается фиксированная масса или единичная партия продукта. В приложениях проточного типа продукт или жидкость нагревается, когда она постоянно течет по поверхности теплопередачи.
Непоточный или периодический нагрев
В приложениях без проточного типа технологическая жидкость хранится в виде единой партии в резервуаре или емкости. Паровой змеевик или паровая рубашка нагревают жидкость от низкой до высокой температуры.
Средняя скорость теплопередачи для таких приложений может быть выражена как:
P = mc p dT / t (2)
, где
P = средняя скорость теплопередачи или мощность (кВт (кДж / с))
м = масса продукта (кг)
c p = удельная теплоемкость продукта (кДж / кг. o C) — Свойства материалов и теплоемкость обычных материалов
dT = Изменение температуры жидкости ( o C)
t = общее время, в течение которого процесс нагрева происходит (секунды)
Пример — Время, необходимое для нагрева воды с прямым впрыском пара
Время, необходимое для нагрева 75 кг воды (c p = 4,2 кДж / кг o C) от температуры 20 o C до 75 o C с паром, произведенным из котла мощностью 200 кВт (кДж / с) можно рассчитать путем преобразования уравнения. От 2 до
t = mc p dT / P
= (75 кг) (4,2 кДж / кг o C) ((75 o C) — (20 o C) ) / (200 кДж / с)
= 86 с
Примечание! — когда пар впрыскивается непосредственно в воду, весь пар конденсируется в воду, и вся энергия пара передается мгновенно.
При нагреве через теплообменник имеет значение коэффициент теплопередачи и разница температур между паром и нагретой жидкостью.Повышение давления пара увеличивает температуру и увеличивает теплопередачу. Время нагрева уменьшено.
Общее потребление пара может увеличиваться — из-за более высоких тепловых потерь или уменьшаться — из-за более короткого времени нагрева, в зависимости от конфигурации реальной системы.
Процессы проточного или непрерывного нагрева
В теплообменниках поток продукта или жидкости непрерывно нагревается.
Преимущество пара — это однородная температура поверхности нагрева, поскольку температура поверхностей нагрева зависит от давления пара.
Средняя теплопередача может быть выражена как
P = c p dT m / t (3)
, где
P = средняя скорость теплопередачи (кВт (кДж / с) ))
м / т = массовый расход продукта (кг / с)
c p = удельная теплоемкость продукта (кДж / кг. o C)
dT = изменение температуры жидкости ( o C)
Расчет количества пара
Если мы знаем скорость теплопередачи — количество пара можно рассчитать:
м с = P / h e (4)
где
м с = масса пара (кг / с)
P = расчетная теплопередача (кВт)
h e = энергия испарения пара (кДж / кг)
Энергию испарения при различных давлениях пара можно найти в таблице пара с единицами СИ или в таблице Steam с британскими единицами измерения.
Пример — периодический нагрев паром
Количество воды нагревается паром 5 бар (6 бар абс.) от температуры 35 o C до 100 o C за период 20 минут (1200 секунд) . Масса воды 50 кг и удельная теплоемкость воды 4,19 кДж / кг. или С .
Скорость теплопередачи:
P = (50 кг) (4,19 кДж / кг o C) ((100 o C) — (35 o C)) / (1200 с)
= 11.35 кВт
Количество пара:
м с = (11,35 кВт) / (2085 кДж / кг)
= 0,0055 кг / с
= 19,6 кг / ч
Пример — непрерывный нагрев паром
Вода течет с постоянной скоростью 3 л / с нагревается от 10 o C до 60 o C паром при 8 бар (9 бар абс) .
Расход тепла можно выразить как:
P = (4. 19 кДж / кг. o C) ((60 o C) — (10 o C)) (3 л / с) (1 кг / л)
= 628,5 кВт
Расход пара может быть выражено как:
м с = (628,5 кВт) / (2030 кДж / кг)
= 0,31 кг / с
= 1115 кг / ч
Как рассчитать закрытый объемы схемных систем
В наших недавних сообщениях в блоге мы рассмотрели различные химические вещества и стандарты, относящиеся к системам с замкнутым контуром.В этом сообщении блога мы делаем шаг назад и рассматриваем одну важную информацию: как рассчитать правильную дозу химикатов для использования в закрытой системе.
К сожалению, компании по очистке воды, с которыми заключены контракты на выполнение различных задач на месте, от промывки до текущего обслуживания и тестирования систем, редко получают эту важную информацию. Поэтому очень полезно знать, как оценивать объемы системы.
Существуют отдельные методы расчета объемов замкнутой системы. Эти расчеты широко используются в отрасли и, хотя и не на 100% точны, дадут работоспособное представление об объемах системы, которые можно использовать для оценки объемов химических веществ, необходимых для обработки.
Метод 1: с использованием номинальной мощности
Большинство чиллеров или котлов систем отопления имеют номинальную мощность в кВт. Обычно это можно найти на табличке на самом заводе оборудования. Если это новая система, то номинальные значения в кВт могут быть указаны установщиком, а номинальные значения в кВт можно будет получить из этой спецификации.
Для коммерческих систем под давлением умножьте номинальную мощность в кВт на соответствующую цифру ниже, чтобы получить оценку объема системы:
- Системы, состоящие из обогрева по периметру, конвекторов и т. Д. = 6 литров / кВт
- Системы вентиляции (приточно-вытяжные установки, фанкойлы и т. Д.), Системы охлажденной воды = 8 литров / кВт
- Стальные панельные радиаторы = 11 литров / кВт
- Чугунные радиаторы = 14 литров / кВт
- Системы дистанционного отопления в больших многоэтажных зданиях = 20 литров / кВт
- Теплый пол = 23 л / кВт
Метод 2: использование Systemtrace CC
Компания B&V Chemicals провела обширные испытания и предлагает индикаторный продукт, который можно использовать вместе с подходящим фотометром для точного определения объемов замкнутых систем. Независимо от того, объемом вашей системы примерно 10 000 или 50 000 л, SYSTEMTRACE CC экономичен и прост в использовании и поможет вам лучше контролировать режим очистки воды.
Один литр Systemtrace CC даст 75 мкг / л индикатора при разбавлении в 10 000 литров. Процесс работает следующим образом:
- Точно отмерьте необходимый объем Systemtrace CC и добавьте его в систему в соответствующей точке дозирования (например, через дозирующую емкость)
- Система должна быть полностью рециркулирующей и оставлена минимум на 2 часа для равномерного рассеивания индикатора.
- Затем следует взять пробы из репрезентативных точек системы.Химический индикатор (PTSA) представляет собой флуоресцентный краситель; при облучении УФ-светом он излучает волны с длиной волны 400-500 нм, и его легко измерить с помощью подходящего фотометра.
Для получения дополнительной информации об этом продукте, пожалуйста, свяжитесь с нашим техническим отделом.
Метод 3: с использованием длины трубопровода
Расчет также может быть выполнен на основе длины трубопроводов, соответствующих диаметров и вместимости любых связанных резервуаров / емкостей. По возможности, разумно ссылаться на исходные схемы проектирования / установки, которые должны включать модификации / обновления исходной системы.
Объём резервуаров:
Прямоугольные резервуары:
Диаметр резервуара мм x длина резервуара мм x высота резервуара мм = объем резервуара в литрах.
Цилиндрические сосуды:
Диаметр резервуара мм / 2 = радиус резервуара мм
(Радиус бака мм2 x 3,14) x высота бака мм = объем бака в литрах.
Внутренний объем чиллера / бойлера обычно указывается на табличке на самом оборудовании.
Для расчета объемов сопутствующих трубопроводов можно использовать приведенную ниже таблицу.
Руководство по содержанию трубопроводов различных размеров
Размер трубопровода 1 метр Объем в литрах Размер 1 метр трубопровода Объем в литрах 15 мм 0,177 100 мм 7,85 22 мм 0,381 125 мм 12,27 25 мм 0. 491 150 мм 17,67 28 мм 0,616 200 мм 31,42 32 мм 0,804 250 мм 49,09 37 мм 1,075 300 мм 70,7 42 мм 1,386 350 мм 96,22 50 мм 1,964 400 мм 125.68 54 мм 2,291 450 мм 159,06 65 мм 3,319 500 мм 196,38 75 мм 4,418 600 мм 282,78 80 мм 5,027 По возможности, фактический объем системы должен быть получен от клиента, и это должно быть отмечено в журнале для этой системы.Для старых систем эта информация вряд ли будет доступна. Если для расчета объема системы используется любой из трех вышеперечисленных методов, важно помнить, что они обеспечивают только хорошее руководство / оценку объема системы. При добавлении ингибитора в систему всегда следите за тем, чтобы ингибитор добавлялся в количествах, обеспечивающих, по крайней мере, минимальный уровень ингибитора, рекомендованный поставщиком.
При добавлении биоцида в систему часто бывает трудно проверить его уровень.Некоторые биоциды на основе изотиазолинона и глутарового альдегида проходят полевые испытания, но они довольно сложны. Для некоторых биоцидов, таких как Pseudokill, доступны более простые наборы для тестирования, поэтому можно проверить уровни этого биоцида в системе.
Для получения технической консультации или получения дополнительных сведений о продукте Systemtrace CC свяжитесь с нашим техническим отделом по телефону 01327 709439 или [email protected]
Сколько воды необходимо системе парового отопления? — Системы водоснабжения Xylem
Том 6 / Выпуск 1 / Апрель 2019
С системами парового отопления вы можете рассчитывать на одно: они всегда будут нуждаться в питательной воде. Сколько воды им нужно, во многом зависит от возраста и состояния системы, но процесс кормления никогда не заканчивается. Куда уходит вода? Он покидает систему путем испарения через негерметичные вентиляционные отверстия на радиаторах и в электросети. Этот тип утечки особенно усугубляется давлением пара, которое поддерживается выше, чем необходимо для системы, и это состояние мы наблюдаем постоянно. А еще есть закопанные трубы. Даже если в системе есть заглубленная обратная линия всего на несколько футов, есть большая вероятность, что она протекает.
Некоторые домовладельцы любят кормить свои паровые котлы вручную, но подавляющее большинство домовладельцев выбирают удобство и дополнительные преимущества безопасности, связанные с автоматическим устройством подачи воды. Это потому, что их подрядчики по отоплению нашли время, чтобы объяснить им преимущества. Например, предположим, что в разгар зимы, когда их нет дома, в системе произошла утечка. Автоматическая кормушка будет поддерживать работу котла на безопасном минимальном уровне воды и поддерживать тепло в доме. Питатель может также защитить паровой котел, подавая в него воду, если газовый клапан заблокируется в открытом положении.
Сколько воды необходимо котлу для поддержания работы, зависит от его мощности, и это очень легко подсчитать. Это работает так: все котлы, независимо от их размера, теряют воду в пар с постоянной скоростью. В идеале, они должны подаваться из расчета 1 галлон в минуту на 250 000 БТЕ / час, валовая нагрузка (D.O.E. Теплопроизводительность). Итак, если котел рассчитан, скажем, на 500000 БТЕ / час, и уровень воды падает до линии подачи, вам следует добавить около 2 галлонов в минуту, чтобы горелка оставалась включенной.
При паровом отоплении жилых домов это можно очень эффективно сделать с помощью WFE Water Feeder от McDonnell & Miller.Когда производители котлов уменьшили размер новых паровых котлов, специалисты M&M разработали этот питатель, чтобы защитить эти небольшие котлы от нежелательных отключений. Устройство подачи воды WFE получает сигнал от датчика низкого уровня воды серии PSE-800 или поплавкового устройства серии 67. У него есть временная схема, которая ждет минуту, подает в течение минуты, ждет минуту и так далее. Этот хорошо продуманный цикл подачи позволяет конденсату возвращаться, что значительно снижает вероятность затопления котла.
Серия PSE-800 МОНД для паровых котлов
Важно знать, что новый дозатор воды McDonnell & Miller WFE включает три отдельных отверстия. Один из них уже установлен в питателе на заводе, и он настроен на скорость подачи 2 галлона в минуту. Это отверстие подойдет для любого парового отопительного котла с номинальной мощностью до 500 000 БТЕ / час. Питатель также имеет два дополнительных отверстия: одно для скорости подачи 1 галлон в минуту, а другое — для скорости подачи 4 галлона в минуту.
Устройство подачи воды WFE
Если вы работаете с очень маленьким паровым котлом на замену — скажем, мощностью 125 000 британских тепловых единиц в час. — Вы должны использовать отверстие на 1 галлон в минуту, которое подходит для котлов мощностью до 250 000 БТЕ / час. Это меньшее отверстие будет подавать медленнее и уменьшит вероятность того, что возвращающийся конденсат затопит котел. Если у вас есть паровой котел большего размера, мощностью до 1 000 000 БТЕ / час, переключитесь на отверстие на 4 галлона в минуту. Это отверстие большего размера позволит питателю удовлетворить потребности более крупного котла и предотвратить его отключение в случае возникновения утечки в системе.
Найдите местного представителя:
http://mcdonnellmiller.com/sales-service/
Просмотрите веб-страницу устройства подачи воды WFE:
http://mcdonnellmiller.com/water-feeders/wfe-uni-match-electronic-feeder /Нажмите здесь, чтобы загрузить pdf-файл SteamTeam за апрель 2019 года.
Основные схемы нагрева воды | Сантехника Перспектива
ОСНОВНЫЕ ДИАГРАММЫ И ФОРМУЛЫ НАГРЕВА ВОДЫ
Rich GrimesУже 2012 год, и в этом выпуске мы постараемся дать вам много информации и полезных схем, связанных с нагревом воды. Я не получаю много запросов, поэтому я рад удовлетворить такую актуальную тему. Самое приятное то, что вам не придется слишком много читать от меня, поскольку эти диаграммы и формулы говорят сами за себя! Итак, поехали…
БТЕ
Британская тепловая единица (BTU) — это единица измерения тепловой энергии. Одна БТЕ — это количество тепловой энергии, необходимое для подъема одного фунта воды на 1 ° F. Вода весит 8,33 фунта на галлон, поэтому мы можем подсчитать, что один галлон воды требует 8,33 БТЕ для повышения температуры на 1 ° F.
БТЕ СОДЕРЖАНИЕ ТОПЛИВА
ИСТОЧНИК ЭНЕРГИИ БТЕ В ЧАС
УГОЛЬ
1 фунт = 10,000 — 15,000
1 тонна = 25 миллионов (приблизительно)
ЭЛЕКТРИЧЕСТВО
1 кВт = 3,412
МАСЛО
1 галлон топлива # 1 = 136,000
1 галлон # 2 топлива = 138,500
1 галлон # 3 топлива = 141,000
1 галлон # 5 Топливо = 148,500
1 галлон # 6 Топливо = 152000
ГАЗ
1 фунт бутана = 21 300
1 галлон бутана = 102 800
1 куб. Фут.бутана = 3,280
1 куб. Фут. произведенного газа = 530
1 куб. Фут. смешанных = 850
1 куб. Фут. натуральных = 1,075
1 куб. Фут. пропана = 2,570
1 фунт пропана = 21 800
1 галлон пропана =
МОЩНОСТЬ
1 котельная мощность (л. С.) = 33 475 БТЕ
1 Мощность котла (л. С.) = 34.5 фунтов пара при 212ºF
1 котельная мощность (л. С.) = 9,81 кВт
ОХЛАЖДЕНИЕ
1 тонна охлаждения = 12000
ИНФОРМАЦИЯ О ГАЗЕ
ПРИРОДНЫЙ ПРОПАН
Удельный вес = 0,62 1,52
Пределы воспламеняемости (смесь ГАЗ / ВОЗДУХ) = 4% -14% 2.4% -9,6%
Максимальное распространение пламени (смесь ГАЗ / ВОЗДУХ) = 10% 5%
Температура возгорания = 1200ºF 950ºF
1 фунт газа (1 фунт / кв. Дюйм) = 28 дюймов водяного столба (водяного столба)
1 фунт газа (1 фунт / кв. Дюйм) = 16 унций (унций)
1 терм. = 100 000 БТЕ
ЭЛЕКТРИЧЕСКАЯ ИНФОРМАЦИЯ
1 Киловатт (кВт) = 3412 БТЕ в час
1 киловатт (кВт) = 1000 Вт в час
Испарится 1 киловатт-час (кВтч) 3.5 фунтов воды при температуре 212ºF (
)
Ампер — однофазный (1 Ø) = кВт x 1000 или ВАТТА
НАПРЯЖЕНИЕ НАПРЯЖЕНИЕАмпер — трехфазный (3 Ø) = кВт x 1000 или ВАТТА
НАПРЯЖЕНИЕ x 1,732 НАПРЯЖЕНИЕ x 1.732
ВОДЯНЫЕ ФОРМУЛЫ
БТЕ в час Требование
ВЫХОД
БТЕ = галлонов в минуту x повышение температуры x 8,33 фунта / галлон x 60 минут
ВХОД
БТЕ = (галлонов в минуту x повышение температуры x 8,33 фунта / галлон x 60 минут)
% КПД
Эффективность теплопередачи
КПД
% = (галлонов в час x повышение температуры x 8.33 фунта / галлон)
БТЕ / час ВХОДВремя нагрева
Время в часах = (галлонов в час x повышение температуры x 8,33 фунта / галлон)
(ВВОД БТЕ / час x% КПД)Повышение температуры
Темп. Повышение (∆T) = (ВХОД БТЕ / час x% КПД)
(галлонов в минуту x 60 минут x 8,33 фунта / галлон)
GPH Восстановление
Электрический = (ВХОДНОЙ кВт x 3412 БТЕ / кВт x% КПД)
(Повышение температуры x 8.33 фунта / галлон)
Газ = (ВВОД БТЕ / час x% КПД)
(повышение температуры x 8,33 фунта / галлон)
ФОРМУЛА СМЕШАННОЙ ВОДЫ
% требуемой горячей воды = (смешанная вода ºF — холодная вода ºF)
(горячая вода ºF — холодная вода ºF)
ИНФОРМАЦИЯ О ВОДЕ
1 галлон = 8,33 фунта
1 галлон = 231 кубических дюймов
1 кубический фут = 7.48 галлонов
1 кубический фут = 62,428 фунта (при 39,2 ° F — максимальная плотность)
1 кубический фут = 59,83 фунта (при 212ºF — точка кипения)
1 фут водяного столба (вод. Ст.) = 0,4333 фунт / кв. Дюйм
Вода расширяется на 4,34% при нагревании от 40 ° F до 212 ° F
Вода расширяется на 8% при замерзании
СУДНО ОТКРЫТОЕ
ТОЧКА КИПЕНИЯ ПРИ ВЫСОТЕ 0 PSI
212ºF 0 футов (уровень моря)
210ºF 1000 футов
208ºF 2000 футов
207ºF 3000 футов
205ºF 4000 футов
203ºF 5000 футов
201ºF 6000 футов
199ºF 7000 футов
ТОЧКА КИПЕНИЯ ЗАКРЫТОГО СУДНА @ PSI @ Уровень моря
МАНОМЕТР ТОЧКИ КИПЕНИЯ
212ºF 0 фунтов на кв. Дюйм
240ºF 10 фунтов / кв. Дюйм
259ºF 20 фунтов на кв. Дюйм
274ºF 30 фунтов на кв. Дюйм
287ºF 40 фунтов / кв. Дюйм
298ºF 50 фунтов / кв. Дюйм
316ºF 70 фунтов на кв. Дюйм
331ºF 90 фунтов на кв. Дюйм
ИНТЕРНЕТ-РЕСУРСЫ
Для каждой математической формулы существует неограниченное количество онлайн-инструментов и калькуляторов.В Интернете полно полезных ресурсов, позволяющих выполнить работу быстрее. Вот несколько ссылок на полезные сайты:
ВЕБ-АДРЕС ВЕБ-САЙТА / ПРОГРАММЫ
Определение размеров расширительного бака Amtrol http://amtrol.com/support/sizing.html
Калькуляторы
Engineering Toolbox http://www.engineeringtoolbox.com/
Определение размеров водонагревателя штата
(онлайн) http: // www.statewaterheatersizing.com/
Расчет размеров водонагревателя AO Smith (онлайн) http://www.hotwatersizing.com/
Размеры водонагревателя Lochinvar (Загрузить) http://www.lochinvar.com/sizingguide.aspx
Калькулятор цилиндров
(резервуары для хранения) / Другие математические калькуляторы http://www.calculatorfreeonline.com/calculators/geometry-solids/cylinder.php
Электрические / механические / промышленные / гражданские / химические / авиационные калькуляторы http://www.ifigure.com/engineer/electric/electric.htm
B&G System Syzer (загрузка трубопровода / инструмента сброса давления) http://completewatersystems.com/brand/bell-gossett/selection-sizing-tools/system-syzer/
Инструменты для выбора и определения размеров B&G (насосы, регуляторы, пар и конденсат) http://completewatersystems.com/brand/bell-gossett/selection-sizing-tools/
Мастер выбора насосов для тако (онлайн-выбор насосов) http://www.taco-hvac.com/en/wizard_pumps.html
Выбор размера смесительного клапана Lawler (онлайн — настройка учетной записи) http: // www.lawlervalve.com/index.php?p=page&page_id=Sizing_Program
База данных DSIRE о государственных / федеральных скидках на возобновляемые источники энергии http://www.