Разное

Калькулятор для расчета трубы теплого пола: Калькулятор для расчета водяного теплого пола онлайн

Содержание

Калькулятор расчета длины труб для теплого пола

Доброго времени суток всем, кто зашел рассчитать длину трубы для водяного теплого пола!

Этот калькулятор рассчитывает длину трубы, исходя из двух важных параметров:

  • Эффективная площадь теплого пола — площадь помещения за минусом площади, над которой установлена мебель и прочие предметы мешающие отводу тепла.
  • Шаг, с которым укладывается труба — величина шага лежит в пределах от 10 до 30 сантиметров. При большем шаге начинает появляться эффект «зебры», то есть пол становится неравномерно прогретым. Величина шага определяется проектировщиком.

Кроме этого, необходимо учесть длину труб, необходимую для подключения контура к коллектору теплого пола. Её можно найти как удвоенное расстояние от начала укладки контура до коллектора.

В результате получаем длину труб контура в метрах.  Для каждого контура теплого пола необходим отдельный расчет.

Необходимо помнить, что максимальная длина контура на трубе диаметром 16 мм не должна превышать 80 метров, а на трубе диаметром 20 мм 100 метров.

При получении большего результата необходимо разбивать длину на разные контура.

В результате получаем длину труб контура в метрах.  Для каждого контура теплого пола необходим отдельный расчет.

Необходимо помнить, что максимальная длина контура на трубе диаметром 16 мм не должна превышать 80 метров, а на трубе диаметром 20 мм 100 метров.

При получении большего результата необходимо разбивать длину на разные контура.

Если вы зашли через турбо-страницу, то вам для использования калькулятора нужно перейти на полную или мобильную версию сайта. 

Итак, приступаем к расчетам!

Введите необходимую площадь теплых полов. По умолчанию 10 кв. метров.

Шаг укладки труб в метрах. Записывайте дробь с точкой, а не с запятой.

Удвоенная длина труб до коллектора. По умолчанию 20 метров.

Онлайн калькулятор расчета водяного теплого пола в зависимости от помещения

Калькулятор  расчета теплого пола  и систем отопления. Разгрузить систему радиаторного отопления дома или полностью ее заменить, при достаточной тепловой мощности  водяного теплого пола будет хватать для компенсации тепло потерь и обогрева помещения.

Как сделать расчет теплого водяного пола онлайн? Водяные полы могут служить основным источником обогрева помещения, а также выполнять дополнительную функцию отопления. Делая расчет этой конструкции нужно заранее решить основные моменты, для какой цели будет служить изделие, полноценно обеспечивать дом теплом или слегка подогревать поверхность для комфортности в помещении.

Если вопрос решен, то следует переходить к составлению конструкции и расчета мощности теплого водяного пола. Все ошибки, которые будут допущены на стадии проектирования, можно будет исправить только путем вскрытия стяжки. Вот почему так важно правильно и максимально точно сделать предварительные расчетные процедуры.

Расчет теплого водяного пола с помощью калькулятора онлайн

Благодаря специально подготовленным системам онлайн расчетов сегодня можно за несколько секунд определить удельную мощность теплого пола и получить необходимые расчеты.

В основу калькулятора входит метод коэффициентов, когда пользователь вставляет индивидуальные параметры в таблицу и получает базовый расчет с определенными характеристиками.

Внеся все заданные коэффициенты можно с максимальной точностью получить точные характеристики рассчитываемого теплого пола. Для этого нужно знать данные:

  • температуру подачи воды;
  • температуру обработки;
  • шаг и вид трубы;
  • какое будет напольное покрытие;
  • толщина стяжки над трубой.

В результате пользователь получает данные про удельную мощность конструкции, среднюю температуру получаемого обогрева пола, удельный расход теплоносителя. Выгодно, быстро и предельно ясно за несколько секунд!

Кроме основных данных следует учитывать ряд второстепенных, которые максимальным образом влияют на конечный результат теплого пола:

  • наличие или отсутствие остекления балконов и эркеров;
  • высота этажа помещения в жилом доме;
  • присутствие специальных материалов для утепления стен;
  • уровень теплоизоляции в доме.

Внимание: делая расчет теплого пола водяного калькулятором, следует учитывать вид полового покрытия, если планируется укладываться древесная конструкция, то мощность обогревающей системы должна быть увеличена за счет низкой теплопроводностью дерева. При высоких теплопотерях обустройство теплого пола в качестве единственной системы обогрева будет неуместно и невыгодно по затратам.

Особенности расчета водяного пола калькулятором.

Прежде чем сделать предварительный расчет системы обогрева водяного пола следует учитывать целый перечень особенностей:

  1. Какой вид трубы будет использовать мастер, гофрированную с эффективной теплоотдачей, медную, с высокой теплопроводностью, из сшитого полиэтилена, металлопластиковые или из пенопропилена, с низкой теплоотдачей.
  2. Расчет длины для обогрева заданной площади, основывается на определении длины контура, распределение тепловой энергии по поверхности в равномерном режиме, с учетом пределов тепловой нагрузки покрытия.

Важно! Если планируется делаться шаг укладки больше, тогда нужно увеличить температуру теплоносителя. Допустимые показатели шага — от 5 до 60 см. Можно использовать как постоянные, так и переменные шаги.

Ошибки новичков — рекомендации профессионалов

Многие пользователи калькулятора онлайн расчета водяного теплого пола допускают существенные ошибки, которые влияют на конечные результаты. Вот некоторые погрешности пользователей:

  • На один контур рассчитана труба длиной не более 120 м.
  • Если теплые полы будут в нескольких комнатах, то средняя длина контура должна быть приблизительно одинаковой, отклонения не должны превышать 15 м.
  • Расстояние между ветками выбирается в соответствии с температурным режимом системы отопления, чаще всего это будет зависеть от региона территории.
  • Средне значение расстояние от стен до контура составляет 20 см, плюс-минус 5 см.

Что нужно знать, отправляясь за необходимыми строительными материалами?

Экструдированный пенополистирол является наилучшим материалом в случае утепления пола, он отличается долговечностью и монолитностью структуры. Сверху утеплителя следует уложить гидроизоляцию, достаточно будет полиэтиленовой пленки, а вдоль стен нужно уложить демпферную ленту.

Арматура является основой для крепления труб и бетонной стяжки, скобы для труб – еще один обязательный элемент. Также следует взять распределяющийся коллектор, который позволит экономно и эффективно распределить теплоноситель.

Заключение

Делая расчет водяного пола онлайн, следует учитывать коэффициент расхождения данных на 10%, таким способом полученные данные будут более реальными и достоверными.

Удачи Вам в строительных работах!

Программа теплый пол 3D калькулькулятор —  

  • Калькулятор для расчета водяного теплого пола онлайн
  • Калькулятора теплых полов
  • Теплый пол (водяной теплый пол)
  • Расчет теплого водяного пола: программа калькулятор
  • Подбор этажных распределительных узлов для систем водяного отопления
  • Вода — удельная теплоемкость
  • 04 [BTU (IT) / (моль ° R)] [BTu (IT) / (фунт м ° F)] [ккал / (кг · K)] [кДж / ( кг K)] [BTU (IT) / кмоль ° R] [BTu (IT) / фунт м ° F] [ккал / кг K] [кДж / кг К] 32.2 40,0 1,007 4,217 40,032 1,008 4,220 40 39,9 1,005 4,208 39,916 1,005 4,208 1,005 4,208 900 1,001 4,191 39,801 1,002 4,196 60 39,6 0,996 4.169 39,739 1,001 4,189 80 39,2 0,986 4,128 39,660 0,999 4,181 100 38,7 0,975 4,082 39,682 0,998 4,179 120 38,3 0,963 4,033 39,662 0,999 4.181 140 37,7 0,950 3,977 39,702 1.000 4,185 160 37,2 0,937 3,923 39,761 1,001 39,761 1,001 180 36,7 0,923 3,865 39,835 1,003 4,199 200 36.1 0,909 3,805 39,927 1,005 4,209 212 35,7 0,900 3,768 39,993 1,007 4,216 22083 4,216 22083 3,745 40,042 1,008 4,221 240 35,0 0,880 3,686 40.186 1,012 4,236 260 34,4 0,867 3,629 40,364 1,016 4,255 280 33,9 0,854 3,574 40,580 1,0 4,278 300 33,4 0,841 3,522 40,838 1,028 4,305 350 32.3 0,813 3,404 41,685 1,050 4,394 400 31,3 0,789 3,302 42,902 1,080 4,522 450 30,4 3,209 44,009 1,108 4,639 500 29,7 0,748 3,130 47.296 1,191 4,986 550 28,8 0,725 3,035 51,318 1,292 5,410 600 28,3 0,713 2,987 59,6903 900 6,292 625 28,4 0,716 2,997 66,611 1,677 7,022 650 28.9 0,728 3,047 82,851 2,086 8,734 675 29,9 0,754 3,156 126,670 3,189 13,353 . Расчет рекуперации водонагревателя
  • Расчет ОВК
  • куб. Футов в минуту
    720 галлонов в минуту
    210 галлонов в минуту
    . Испарение с водной поверхности

Калькулятор для расчета водяного теплого пола онлайн

Как самостоятельно рассчитываются отдельные элементы отопительной системы

Для начала представим вашему вниманию простую и понятную схему – рисунок, на которой изображено расположение водяных контуров в жилых помещениях.

Рассчитывать мощность следует начинать с элементарных, простых шагов. План расположения водяного отопительного контура станет основной для последующих расчетов. На схеме обычно указывается так же расположение оконных и дверных проемов.

Такие схемы выполняются на миллиметровой бумаге, в масштабе 10 мм соответствует 0,5 м.

Для определения полезной отапливаемой площади следует отталкиваться от шага. Обычно применяются следующие соотношения:

  • при шаге 15 см – полезная площадь не должна превышать 12 кв. метров;
  • при шаге 20 см – не более 16 м2;
  • при шаге 25 см —  не более 20 м2;
  • шаг в 30 см позволяет эффективно отапливать помещение площадью в 25 м2.

Если площадь меньше рекомендуемых параметров, контуры лучше оставлять целым.

Выбираем трубы: материал, диаметр, количество

Для скрытых систем отопления можно использовать металлические и полимерные трубы. Наиболее долговечной и эффективной по праву считается медная система. Однако в нашей стране этот материал используется достаточно редко. Причиной тому – высокая цена. Кроме того, для монтажа медных труб необходимо специальное дорогостоящее оборудование, а значит, самостоятельная их укладка не рентабельна.

Немного чаще чем медь для монтажа «подпольных» систем домашние умельцы используют полипропилен и сшитый полиэтилен (РЕХ-труба). Но и эти материалы нельзя назвать самыми попу

Калькулятора теплых полов

Для чего это нужно

Калькулятор теплого пола позволяет легко рассчитать необходимое количество греющего кабеля для основных типов помещений.

Кнопка «Рассчитать» запускает расчет параметров монтажа.

Вы можете сохранить результаты расчета в формате pdf и перейти в каталог для заказа товара.

Результаты программы расчета могут отличаться от результатов профессиональных инженерных расчетов.

Памятка перед монтажем. Частично аккумулирующее отопление

Снижение затрат на электроэнергию может достигаться за счет использования систем отопления, задействованных в ночные часы. Для этого необходимо, чтобы тепло накапливалось в бетонной стяжке во время действия низких тарифов, и обогревало помещение днем. Бетонная стяжка прогревается нагревательными кабелями, интенсивность, скорость прогревании накопление тепла зависит от толщины стяжки, глубины залегания кабеля и материала покрытия пола. Нагревательные кабели можно использовать как для укладки в базовую, так и выравнивающую стяжку. Частично аккумулирующее отопление обычно используется с такими материалами покрытия пола как линолеум, дерево, ковролин. Необходимо убедиться в том, что толщина стяжки достаточна для накопления тепла, в противном случае требуется заложить дополнительные источники отопления.

Правильный температурный режим

Для достижения максимального уровня комфорта мы рекомендуем поддерживать следующие температуры поверхности пола:

  • Линолеум 26-28 °C
  • Керамическая плитка/ бетонный пол 26-28 °C
  • Ламинат 23-27 °C

Максимальная температура пола может быть ограничена терморегулятором.

Если Вам неизвестна максимально допустимая температура поверхности для Вашего материала покрытия пола, пожалуйста, свяжитесь с его производителем.

Важно! Дерево является хорошим теплоизоляционным материалом.

Что нужно учесть при монтаже теплого пола

  • Нагревательные кабели не устанавливаются под мебелью и стационарными предметами
  • Необходимо соблюдать монтажный интервал в расчетных пределах и минимальный радиус изгиба
  • Нельзя допускать пересечения нагревательных кабелей друг с другом
  • Кабель должен находиться в равномерной и однородной среде по всей его длине
  • Во избежание перегрева, кабель нельзя устанавливать внутри теплоизоляционного слоя
  • Во избежание физических повреждений, кабель укладывается только на очищенную поверхность
  • Нагревательный кабель не должен проходить через подвижный шов, изломы или монтироваться в зонах возможного перегрева. Расстояние до источников тепла, например, камина, печи в сауне и т.п. должно быть не менее 0,5 м
  • Возможность использования нагревательного кабеля с материалами покрытия пола регламентируется их производителями
  • Резистивный нагревательный кабель нельзя укорачивать или наращивать
  • Во всех зонах необходимо использовать устройство защитного отключения на 30 мA
  • Угол установки гофро-трубки под датчик на стене должен быть таким, чтобы датчик было легко извлечь в случае его выхода из строя. Датчик устанавливается посередине между витками кабеля
  • Монтажный интервал может быть меньше в зонах максимальных теплопотерь, например, окон, но не менее 2-х радиусов изгиба
  • Нельзя включать кабель до окончательного высыхания стяжки или выравнивающего раствора. Точные сроки регламентируются производителями. Для бетонной стяжки этот срок составляет около 30 дней, для выравнивающего раствора или клея — до 14 дней.

Теплый пол (водяной теплый пол)

  • VALTEC
  • Теплый пол (водяной теплый пол)

Водяное напольное отопление становится все более популярным, поскольку обладает рядом преимуществ и является более энергоэффективными, по сравнению с традиционными радиаторными системами. Поскольку тепло в данном случае передается излучением от нагретой поверхности, практически отсутствуют конвективные потоки. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, что существенно снижает теплопотери через кровлю, верхние части стен и создает оптимально комфортные температурные условия для находящихся в помещении людей. Экономия от применения водяных теплых полов может достигать 10–30 %. Это возможно благодаря снижению средней температуры воздуха в помещении на 2 °С и температуры нагрева теплоносителя до 30–45 °С. Кроме того, низкотемпературные системы отопления (теплый пол) обладают ярко выраженным эффектом саморегулирования, то есть теплоотдача с поверхности пола прекращается, когда температура в комнате, в результате внешних воздействий (выглянуло солнце) достигает температуры поверхности пола. В то же время, теплоотдача возрастает, когда снижается температура в помещении. Радиаторы работают по тому же принципу, но разница температур между воздухом в комнате и поверхностью радиаторов так велика, что эффект саморегулирования практически пропадает.

VALTEC поставляет на российский рынок широкий ассортимент качественной продукции, позволяющий реализовать систему напольного отопления любой сложности. Это металлополимерная труба, надежные обжимные и пресс-фитинги, коллекторные блоки, насосно-смесительные узлы, а также автоматика, обеспечивающая заданный уровень комфорта в помещениях. Для специалистов разработаны Альбом типовых схем водяного отопления для жилых домов, где собраны различные варианты организации одно- и многоконтурных систем, а также программный комплекс для расчета элементов инженерных систем VALTEC. Программа VALTEC.PRG дает возможность определить теплопотребность помещений и грамотно определить теплотехнические и гидравлические параметры напольного отопления.

Кроме того, инженеры VALTEC продумали готовые решения для монтажа водяного теплого пола с различным уровнем автоматизации («Эконом», «Комфорт», «Премиум») в помещениях площадью 20, 40, 60, 80 и 120 м2. Воспользовавшись этими спецификациями, можно самостоятельно укомплектовать систему напольного отопления своего дома или при выполнении монтажных работ на объекте заказчика.

В помощь специалистам и владельцам жилья разработан также «Типовой комплект водяного теплого пола для помещений площадью до 60 м2».

Комплексный подход VALTEC к системам напольного отопления гарантирует их экономичность, оптимальную стоимость и длительную безаварийную работу.

Задай свой вопрос по водяным теплым полам

 

Интервью

 

Водяной теплый пол valtec: есть ответы на все вопросы

Каждый, кто начинал строительство нового дома, сталкивался с проблемой выбора. Сначала это выбор проекта, дизайна, строительной организации, затем – материалов, технологий и т.д. Желая помочь читателям в выборе системы отопления, мы пообщались с руководителем направления «Водяной теплый пол» VALTEC Сергеем Пискаревым.

Прежде всего, VALTEC известен как производитель труб и арматуры для внутренних инженерных систем. Почему с 2010 года одним из приоритетных направлений ее развития стали системы для напольного отопления?
– Любому бизнесу необходимо развитие. Малейший простой на месте – это шаг назад. Но и двигаться необходимо в перспективном и востребованном направлении. Проанализировав ситуацию на рынке и оценив свои возможности, мы пришли к решению, что водяной теплый пол – это именно то, что нужно. Специалисты VALTEC давно занимаются подобными системами. Большинство необходимого для их монтажа оборудования у нас уже было. А изучение рынка показало, что в перспективе данная технология может быть очень востребованной. Хотя многие пользователи до сих пор не знают о преимуществах напольного отопления и по старинке применяют только радиаторы.

В чем же заключаются эти преимущества?
– Их достаточно много. В первую очередь – комфорт. В отличие от традиционных отопительных приборов конвективного типа (радиаторов), напольное отопление передает тепло главным образом излучением, и оно распределяется по всему помещению равномерно, отсутствуют зоны локального перегрева или недостаточно прогреваемые участки. При этом температура воздуха постепенно понижается от пола до потолка, а для организма человека такие условия наиболее близки к оптимальным. Необходимо отметить и такие преимущества «теплого пола», как энергоэффективность, эстетика, гигиеничность.

Вы сказали, что водяное напольное отопление – это энергоэффективная система. А чем это обеспечивается?
– Экономия энергии при использовании системы «водяной теплый пол» может быть очень существенной. Дело в том, что температура теплоносителя, поступающего в трубы теплого пола, составляет всего 35–50 °С, что позволяет снизить энергозатраты на нагрев. При этом можно использовать низкотемпературный конденсационный котел с увеличенным КПД. Вертикальное распределение тепла от пола к потолку не позволяет перегреваться верхним областям помещения, поэтому уменьшаются теплопотери через кровлю и верхние части стен.

Поскольку тепло распределяется в помещении равномерно, средняя температура в комнате может быть понижена на 2 °С без изменений в ощущениях тепла человеком, что обеспечивает экономию энергии на 10–20 %. И это при стандартной высоте потолка в 3 м. В том случае, если мы используем теплый пол в помещении с высокими потолками, где нет необходимости прогрева верхних слоев воздуха, экономия составляет 30 % и более.
Вместе с тем, немаловажную роль в экономии играет эффект саморегулирования водяного теплого пола, то есть система сама реагирует на перепады температуры в помещении, изменяя мощность теплового потока. Например, представим себе, что выглянуло солнце, и воздух в комнате нагрелся на 2–4°С. При этом теплоотдача теплого пола самопроизвольно уменьшается на 36–70 %.

А в чем проявляются эстетика и гигиеничность «теплого пола»?

– Все элементы системы надежно скрыты под напольным покрытием, что, согласитесь, лучше подойдет для современных интерьеров, чем торчащие из пола и стен трубы. Это становится особенно важным при использовании в строительстве панорамных окон – от пола до потолка. Да и в ретро-интерьер радиаторы вписываются не очень органично.
Так как тепло передается не конвекцией, а излучением, в воздухе помещения практически отсутствует циркуляция пыли и микроорганизмов. Эта особенность напольного отопления как нельзя кстати для аллергиков. Кроме того, в отличие от электрического теплого пола, водяной не создает электромагнитных полей.
Плюс ко всему, напольное отопление исключает возможность детского травматизма, а в некоторых случаях, как например, при устройстве спортивного зала, оно является самым безопасным решением.

Скажите, какие «подводные камни» могут ожидать владельца коттеджа, если он примет решение использовать систему водяного напольного отопления?
– Главное сделать правильный выбор в пользу того или иного производителя и не ошибиться с монтажной организацией, а точнее – с квалификацией ее специалистов. Неграмотный монтаж способен свести на нет преимущества даже самого передового оборудования. Вот почему мы много внимания уделяем обучению монтажников. Ежемесячно наши специалиста посещают партнеров в различных регионах России и других стран СНГ, проводят семинары, отвечают на вопросы практиков. На семинары, которые каждую пятницу проводятся в офисе VALTEC, может записаться любой желающий. Кроме того, VALTEC издано большое количество технической литературы, разработана компьютерная программа для точного расчета системы.

Как и другая продукция VALTEC, компоненты для напольного отопления имеют 7-летнюю гарантию от производителя.

Водяной теплый пол: вопросы и ответы — проектирование, монтаж, эксплуатация

Расчет теплого водяного пола: программа калькулятор

Теплый пол … Водяной

Водяной теплый пол может быть как альтернативный, так и основной источник тепла. От этого следует отталкиваться при расчетах. Например, может использоваться схема, которая будет обеспечивать полноценный обогрев дома и наоборот, легкий подогрев. Если же напольное отопление будет основным, то должна быть хорошо продуманная и надежная система регулировки.

По этой причине расчет теплого водяного пола требует внимания. В помощь к этому имеются разные программы и онлайн калькулятор. Это поможет выполнить все предварительные расчеты без ошибок. Ошибка на данном этапе может закончиться плохими последствиями, вплоть до демонтажа стяжки.

к содержанию ↑

Что необходимо учесть при расчетах

Перед началом расчета важно знать основные характеристики объекта. Как уже говорилось, на этом этапе следует определиться с методом обогрева данной системы, она будет вспомогательной или основной. При расчете следует учесть конфигурацию и площадь комнаты. Для этого в помощь будет план или разрез указанных размеров.

Если у вас отсутствует план с точными размерами помещения, то первым делом необходимо его сделать!

Чтобы создать такой план потребуется знать такую информацию:

  • Из какого материала строился дом (бетон, дерево, блоки, кирпичи и прочее).
  • Остекление выполнено из стеклопакетов или профиля.
  • Средняя температура местности проживания в зимний период.
  • Имеется ли дополнительный или альтернативный источник тепла.

Более того, важно знать какая температура должна быть внутри помещения при работающем отоплении. Например, если в помещении будет постоянно находится люди, то достаточно будет 29°С. Для проходного и служебного помещения достаточно будет 35 и 33°С соответственно. Кроме всего прочего, важно выяснить тип и толщину теплоизоляции пола. Уже на этом этапе следует решить, какой будет использоваться отделочный материал для пола. Благодаря сбору такой информации получиться произвести точный расчет теплого водяного пола. Тем более что при использовании онлайн калькулятора все эти данные необходимо указать.

Видео об изготовлении схемы теплого пола:

Не менее важно определиться какую температуру должен иметь теплоноситель. В этом вопросе следует учесть два фактора:

  1. Ряд напольных покрытий имеют температурное ограничение нагревания до 35°С.
  2. Система, имеющая насос, котел, радиаторы и трубопровод никогда не будет иметь температуру теплоносителя более 60°С.

Другой вопрос, который следует учесть: как именно будет осуществляться контроль температуры нагрева пола? Как правило, для этого используют терморегулятор, а также датчик, который монтируется непосредственно в пол. Но для водяных систем этих датчиков быть два, для обратки и подачи.

к содержанию ↑

Важные условия для продуктивной работы водяного обогрева пола

Важно знать не только максимально точную информацию по техническим характеристикам дома, но и учитывать особенности трубопровода. Поэтому перед тем, как рассчитать теплый пол при помощи специальной программы следует узнать такие подробности:

  • Какая общая длина отопительного контура. По требованиям монтажа она не должна превышать 120 м.
  • Разница греющих труб не должна превышать 15 м.
  • Расстояние между трубами. В среднем оно будет находиться в пределах 100-200 мм.

Уже с этой информацией можно выполнить необходимые расчеты.

к содержанию ↑

Два метода расчета теплого водяного пола

Существует два решения проблемы по расчету теплых полов. В первом случае потребуется помощь квалифицированных специалистов или компании. Они произведут все необходимые вычисления и измерения. После, они предоставят для вас подробный расчет, учитывая индивидуальные особенности помещения.

В таких компаниях работаю высококвалифицированные специалисты, которые имеют опыт проектирования на промышленном уровне. Это позволит рассчитывать на максимально точный результат, где будут учитываться разные нюансы и тонкости.

Если вы пожелаете, то вам предоставят консультацию по выбору наилучшего напольного покрытия. Процесс изготовления проект получится быстрей, если вы сразу предоставите все чертежи по планировке комнат.

Другой метод не затратный. Для этого на помощь приходит онлайн калькулятор. При этом вы сможете самостоятельно произвести точные вычисления стоимости работ и необходимых материалов. Использование такой программы, позволит определить необходимую мощность пола. Этот показатель будет исходить из общих тепловых потерь. Так, чтобы узнать эту информацию, в калькуляторе следует ввести данные о площади комнаты. При этом в эту сумму не должны включаться зоны, где будет стоять мебель и другое оборудование.

Калькулятор позволит вам избавиться от потребности производить самостоятельные сложные расчеты. Хотя полученные данные будут относительные, от них можно дальше отталкиваться. Также вы сможете узнать о масштабах будущего проекта. При желании можно будет узнать сколько необходимо стяжки. Для этого в программу вводятся следующие показатели:

  • Этаж.
  • Площадь в м2.
  • Толщина стяжки.

Безусловно, точную сумму вы сможете узнать только у специалистов. Но в таком случае вам получиться получить предварительную информацию. В большей степени на конечную сумму за работу и материалы влияет сложность работ, особенности проекта здания и многое другое. Все эти нюансы учитывают специалисты из специализированной компании. Итак, перед тем, как рассчитать теплый водяной пол на калькуляторе помните, что вы получите приблизительные данные. На нашем сайте вы сможете воспользоваться программой онлайн калькулятор.

Видео расчета теплых полов программой:

Остались вопросы?

Подбор этажных распределительных узлов для систем водяного отопления

Подключение к стоякам:

СлеваСправа

Dy:

3/4″1″1 1/4″


Gmax = 1,13 м3/час
      
Qmax = 26,3 KВт

Вид балансировки узла:

Без регулировкиБалансировочный клапанРегулятор перепада давлений

Крепление:

РамаВстроенный шкафПристроенный шкаф

Коллекторы

Тип коллекторного блока:

Без перепускного клапанаС перепускным клапаном

Число выходов:

345678

Dy коллектора:

1″1 1/2″

Воздухоотводчики:

РучныеАвтоматические

Манометры:

НетЕсть

Дренажные краны:

НетЕсть

Теплосчетчики

Место установки:

На прямойНа обратной

Тип выхода:

НетM-BusИмпульсный + M-Bus

Выходы

Регулировка:

НетБалансировочный клапанНастроечный клапанВентильСтабилизатор расхода со скрытой настройкойСтабилизатор расхода с открытой настройкой

Выход


Gном ТС м3/час:   
Gрасч ТС м3/час:   
ΔPрасч КПа  

 

Вода — удельная теплоемкость

Удельная теплоемкость (C) — это количество тепла, необходимое для изменения температуры единицы массы вещества на один градус.

При расчете массового и объемного расхода в системах водяного отопления при более высоких температурах следует скорректировать удельную теплоемкость в соответствии с рисунками и таблицами ниже.

Удельная теплоемкость дается при различных температурах (° C и ° F) и давлении водонасыщения (которое для практического использования дает тот же результат, что и атмосферное давление при температурах

  • I удельная теплоемкость сохора (C v ) для воды в замкнутой системе постоянного объема , (= изометрической или изометрической ).
  • Изобарическая теплоемкость (C p ) для воды в системе постоянного давления (ΔP = 0).
Онлайн-калькулятор удельной теплоемкости воды

Калькулятор ниже можно использовать для расчета удельной теплоемкости жидкой воды при постоянном объеме или постоянном давлении и заданных температурах.
Выходная удельная теплоемкость выражается в кДж / (кмоль * K), кДж / (кг * K), кВтч / (кг * K), ккал / (кг K), британских тепловых единицах (IT) / (моль * ° R). и Btu (IT) / (фунт м * ° R)

Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.

См. Вода и тяжелая вода — термодинамические свойства.
См. Также другие свойства Вода при меняющейся температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации , pK w , нормальной и тяжелой воды, точки плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельный объем, теплопроводность, температуропроводность и давление пара в газожидкостном состоянии. равновесие,
, а также Удельная теплоемкость воздуха — при постоянном давлении и переменной температуре, воздух — при постоянной температуре и переменном давлении, аммиак, бутан, диоксид углерода, монооксид углерода, этан, этанол, этилен, водород, метан, метанол , Азот, кислород и пропан.

Удельная теплоемкость для жидкой воды при температурах от 0 до 360 ° C:

Для полного стола с изобарической удельной теплоемкостью — поверните экран!

[Дж / (моль K)]

340

Температура Изохорная удельная теплоемкость (C v )
Изобарическая удельная теплоемкость (C p )
[° C] [кДж / (кг K)] [кВтч / (кг K)] [ккал / (кг K)]
[BTU ( IT) / фунт м ° F]
[Дж / (моль · K)] [кДж / (кг · K)] [кВтч / (кг · K)] [ккал / (кг · К)]
[британские тепловые единицы (IT) / фунт м ° F]
0.01 75,981 4,2174 0,001172 1,0073 76,026 4,2199 0,001172 1,0079
10 75,505 4,1910 0,001164 1,0010 758 4,1910

0,001165 1,0021
20 74,893 4,1570 0,001155 0,9929 75.386 4,1844 0,001162 0,9994
25 74,548 4,1379 0,001149 0,9883 75,336 4,1816 0,001162 0,9988
74,11162 0,9988
74 0,001144 0,9834 75,309 4,1801 0,001161 0,9984
40 73.392 4,0737 0,001132 0,9730 75,300 4,1796 0,001161 0,9983
50 72,540 4,0264 0,001118 0,9617 75,31134 0,001118 0,9617 75,31134 0,9987
60 71,644 3,9767 0,001105 0,9498 75,399 4.1851 0,001163 0,9996
70 70,716 3,9252 0,001090 0,9375 75,491 4,1902 0,001164 1.0008
80 69,78
80 69 0,9250 75,611 4,1969 0,001166 1,0024
90 68.828 3,8204 0,001061 0,9125 75,763 4,2053 0,001168 1,0044
100 67,888 3,7682 0,001047 0,9000 75.91511 1,0069
110 66,960 3,7167 0,001032 0,8877 76,177 4.2283 0,001175 1,0099
120 66,050 3,6662 0,001018 0,8757 76,451 4,2435 0,001179 1,0135
140 0,8525 77,155 4,2826 0,001190 1,0229
160 62.674 3,4788 0,000966 0,8309 78,107 4,3354 0,001204 1,0355
180 61,163 3,3949 0,000943 0,81060 7 0,81060 1,0521
200 59,775 3,3179 0,000922 0,7925 80,996 4.4958 0,001249 1,0738
220 58,514 3,2479 0,000902 0,7757 83,137 4,6146 0,001282 1,1022
240 57003 0,7607 85,971 4,7719 0,001326 1,1397
260 56.392 3,1301 0,000869 0,7476 89,821 4,9856 0,001385 1,1908
280 55,578 3,0849 0,000857 0,7368 95,2857 0,7368 1,2632
300 55,003 3,0530 0,000848 0,7292 103,60 5.7504 0,001597 1,3735
320 54,819 3,0428 0,000845 0,7268 117,78 6,5373 0,001816 1,5614
55514
340 0,7352 147,88 8,2080 0,002280 1,9604
360 59.402 3,2972 0,000916 0,7875 270,31 15,004 0,004168 3,5836

Удельная теплоемкость для жидкой воды при температурах от 32 до 675 ° F:

Для полной таблицы с изобарической температурой Тепло — поверните экран!

900

1,0

Температура Изохорная удельная теплоемкость (C v )
Изобарическая удельная теплоемкость (C p )
[° F]

04 [BTU (IT) / (моль ° R)]

[BTu (IT) / (фунт м ° F)]
[ккал / (кг · K)]
[кДж / ( кг K)] [BTU (IT) / кмоль ° R] [BTu (IT) / фунт м ° F]
[ккал / кг K]
[кДж / кг К]
32.2 40,0 1,007 4,217 40,032 1,008 4,220
40 39,9 1,005 4,208 39,916 1,005 4,208 1,005 4,208
1,001 4,191 39,801 1,002 4,196
60 39,6 0,996 4.169 39,739 1,001 4,189
80 39,2 0,986 4,128 39,660 0,999 4,181
100 38,7 0,975 4,082 39,682 0,998 4,179
120 38,3 0,963 4,033 39,662 0,999 4.181
140 37,7 0,950 3,977 39,702 1.000 4,185
160 37,2 0,937 3,923 39,761 1,001 39,761 1,001 180 36,7 0,923 3,865 39,835 1,003 4,199
200 36.1 0,909 3,805 39,927 1,005 4,209
212 35,7 0,900 3,768 39,993 1,007 4,216
22083 4,216
22083 3,745 40,042 1,008 4,221
240 35,0 0,880 3,686 40.186 1,012 4,236
260 34,4 0,867 3,629 40,364 1,016 4,255
280 33,9 0,854 3,574 40,580 4,278
300 33,4 0,841 3,522 40,838 1,028 4,305
350 32.3 0,813 3,404 41,685 1,050 4,394
400 31,3 0,789 3,302 42,902 1,080 4,522
450 30,4 3,209 44,009 1,108 4,639
500 29,7 0,748 3,130 47.296 1,191 4,986
550 28,8 0,725 3,035 51,318 1,292 5,410
600 28,3 0,713 2,987 59,6903 900 6,292
625 28,4 0,716 2,997 66,611 1,677 7,022
650 28.9 0,728 3,047 82,851 2,086 8,734
675 29,9 0,754 3,156 126,670 3,189 13,353

.

Расчет рекуперации водонагревателя

Расчет рекуперации электрической воды
обогреватель / лето и зима:

A) Типичный жилой неодновременный водонагреватель мощностью 4500 Вт
элементы.
Лето:
65 температура входящей воды. Ресурс: Средняя температура неглубоких грунтовых вод
Термостат установлен на
125F:
4500 ватт разделить на [повышение температуры 2,42 x 60] = 31 галлон в час.
Восстановление летом
Зима:
40 температура входящей воды.
Термостат настроен на
125F:
4500 ватт разделить на [2.42 x 85 повышение температуры] = 21 галлон / час
восстановление зимой

B) Бытовой водонагреватель переведен на одновременную проводку, где оба
элементы могут нагреваться одновременно
Установите 2 элемента — 5550 Вт каждый, подключенный к отдельному 30 А
выключатель. Ресурс: Как подключить синхронный водонагреватель
Лето:
65 температура входящей воды.
Термостат настроен на
125F. Ресурс: Как отрегулировать температуру водонагревателя
11000 ватт разделить на [повышение температуры 2,42 x 60] = 75 галлонов в час.
рекуперация для одновременного водонагревателя летом
Зима:
40 температура входящей воды.
Термостат настроен на
125F:
11000 ватт разделить на [повышение температуры 2,42 x 85] = 53 галлона в час.
рекуперация на одновременный водонагреватель зимой

Повышение
восстановление путем повышения температуры на термостате
Повышение рекуперации путем изменения настройки термостата. Ресурс: Как отрегулировать температуру водонагревателя
Верхний и нижний термостат можно настроить по-разному.
Таймер можно использовать для контроля разницы температур и экономии денег
путем переключения мощности нагрева воды в зависимости от пикового использования
раз.Ресурс: Используйте таймер для управления термостатами

Увеличить
восстановление путем установки темперирующего бака для пассивного подогрева входящего
холодная вода
Темперирующая емкость

Увеличение
рекуперация путем установки 2 водонагревателей
2 водонагревателя означают, что имеется больший объем горячей воды, и пользователь
меньше вероятность нехватки горячей воды
Ресурс: два водонагревателя

Мнение:
Повышение
термостат до 130F — самый простой способ увеличить восстановление. Установка
темперирующий резервуар — дополнительная работа, но эффективна для повышения температуры
холодной поступающей воды.

Если требуется очень высокое восстановление, подключите дополнительный выключатель и работайте.
еще один провод 10 калибра для одновременного
операция — лучший способ ускорить выздоровление.
Ресурс: Как подключить одновременный водонагреватель
Преобразование в одновременный — больше работы, но безопаснее, чем
повышение температуры воды до 140-150F.

.

Расчет ОВК

Расчеты размера системы HVAC
в зале Macalister будет проходить двумя способами. Первый метод будет
основываться на оценках кубических футов в минуту и ​​тоннажа, указанных в ASHRAE. Второй способ,
что более подробно, предполагает использование программы моделирования Carrier E-20
для расчета нагрузок.

Стандарты оценки ASHRAE:

ASHRAE устанавливает стандарты для
оценка кубических футов в минуту и ​​тоннажа в здании.При расходе 20 куб. Футов в минуту на человека
стандарт и система повторного нагрева, ASHRAE устанавливает следующие числа:

Расчетная охлаждающая нагрузка (тонны): от 0,25 до
0,35 тонны на 100 квадратных футов общей площади здания

Расчетная тепловая нагрузка (MBH): от 1,5 до
2,5 MBH на 100 квадратных футов общей площади здания

Расчетный кубический фут в минуту: от 75 до 125 кубических футов в минуту на 100
квадратных футов общей площади здания

охлажденной воды, галлонов в минуту: 2.4 галлона в минуту на тонну
охлаждение

галлонов горячей воды в минуту: отопление MBH, разделенное на
10

Для наших оценок мы будем использовать
середины этих значений, чтобы дать ответ, который не будет ни слишком либеральным, ни
слишком консервативен.

Метод оценки ASHRAE для Macalister
Зал:

Общая площадь кондиционированных
место в Macalister
Зал выглядит следующим образом:

28400 футов 2 в подвале

24400 футов 2 в первом
этаж

13 500 футов 2 на каждой башне
этаж

10,500 футов 2 на факультете
клуб

Общая кондиционированная площадь: 117 300 футов 2

Исходя из рассчитанной площади
выше и стандартов ASHRAE, изложенных ранее, нагрузки на здание
рассчитывается по следующей таблице:

Охлаждающая нагрузка

Нагревательная нагрузка

Всего CFM

Охлажденная вода

Горячая вода

350 тонн

2350 МБХ

117300 куб. Футов в минуту

840 галлонов в минуту

235 галлонов в минуту

Программа Carrier E-20

Программа Carrier E-20 намного точнее, чем упомянутая ранее
предварительный расчет.С помощью этой программы рассчитываются нагрузки на здание.
с учетом строительных материалов, направленная облицовка,
инфильтрация, графики занятости, загрузка оборудования, загрузка людей и др.
уставки в системе HVAC. Обрисован ввод данных в программу.
ниже.

Температура воздуха в регионе Филадельфия

Сезон

Сухой термостат (F)

Мокрая лампа (F)

Суточный диапазон (F)

Зима

10

НЕТ

НЕТ

Лето

93

75

14

Филадельфия Высота над уровнем моря: 26 футов

Philadelphia Latitude Адрес: 40

Информация о строительных материалах:

В следующих разделах показаны две основные формы конструкции Macalister.
Зал.Башня состоит из 6-дюймовой сборной бетонной панели снаружи.
большое воздушное пространство и внутреннее пространство из 4-х дюймовых бетонных блоков. Первый
пол состоит из кирпича 4 дюйма, с воздушным зазором 1 дюйм и бетона 8 дюймов.
блочная стена.

Стена 1-го этажа
Секция Башня Стеновая Секция

Из приведенных выше секций стен я рассчитал общее значение U стен.
(БТЕ / час / фут 2 / F) в зависимости от используемых материалов и установленных стандартов
вперед в ASHRAE.Табличные значения следующие:

Строительство 1 этажа:

Строительные материалы

R-Value (часы x футы 2 x F / BTU)

Значение U (БТЕ / час / фут 2 / фут)

Сопротивление наружному воздуху

0.33

3,03

Лицевой кирпич 4 «

0,43

2,33

Воздушный зазор 1 «

0,91

1,10

8 «CMU

2.02

0,50

Внутреннее сопротивление воздуха

0,69

1,45

Итого

4,38

8,41

Строительство башни:

Строительные материалы

R-Value (часы x футы 2 x F / BTU)

Значение U (БТЕ / час / фут 2 / фут)

Сопротивление наружному воздуху

0.33

3,03

6-дюймовая сборная железобетонная панель

3,22

0,31

Воздушный зазор 6 дюймов

0,91

1,10

4 «CMU

1.11

0,90

Внутреннее сопротивление воздуха

0,69

1,45

Итого

6,26

6,79

Типовая конструкция окна:

Предполагается алюминиевое стеклопакетное окно с терморазрывом и светлыми плафонами.
на внутренней.Эти предположения приводят к следующим значениям:

Общее значение U: 0,537 (БТЕ / ч / фут 2 / фут)
Коэффициент затенения: 0,454

Типовая конструкция крыши:

Предполагается монолитная крыша на стальном настиле 22 колеи с изоляцией из плит Р-7.
Эти предположения приводят к следующему значению:

Общее значение U:.121 (БТЕ / ч / фут 2 / фут)

Типичная световая нагрузка: 1,5 Вт / фут 2

Типичная нагрузка на людей: 1 человек / 150 футов 2 при выполнении офисной работы:

Явная нагрузка: 245 BTUH
Скрытая нагрузка: 205 BTU

Типичные потери при инфильтрации: 2 воздухообмена в час

Типовая загрузка оборудования: .5 Вт / фут 2

Уставки и коэффициенты безопасности:

Уравнения, используемые E-20 для расчета нагрузок:

1. Нагревательная нагрузка: Q = U x A x T

Где:

Q = Скорость теплопередачи, БТЕ / час
U = Общий коэффициент теплопередачи, БТЕ / час / фут 2 / F
A = Площадь поверхности, через которую тепло потоки, футы 2
T = разница температур, через которую течет тепло, F

Площадь стены рассчитана исходя из высоты пола 12 футов-0 дюймов.
в башне и 15′-0 «на первом этаже.

2. Охлаждающая нагрузка: Q = U x A x CLTD c

Где:

Q = Нагрузка на охлаждение для крыши, стекла или стены, БТЕ / час
U = Общий коэффициент теплопередачи для крыши, стекла или стены, БТЕ / час / фут 2 / F
A = Площадь крыши, стекла или стены, футы 2
CLTD c = Скорректированная разница температур охлаждающей нагрузки, F

CLTD c — это измененное значение разницы температур, которая
учитывает эффект накопления тепла и запаздывания.

3. Солнечное излучение через стекло: Q = SHGF x A x SC x CLF

Где:

SHGF основан на ориентации и времени года, а SC основан на
вид драпировки на окне.

4. Осветительная нагрузка: Q = 3,4 x Ш x BF x CLF

Где:

BF учитывает тепловые потери в балластах люминесцентных ламп и
CLF учитывает накопление тепла в осветительных приборах.

5. Нагрузка на людей: Q s = q s x n x CLF, Q l
= q l x n

Где:

Q с и Q л = Явное и скрытое тепловыделение, БТЕ / час
q с и q л = Явное и скрытое тепловыделение на
человек, БТЕ / час на человека
n = Количество человек
CLF = Коэффициент охлаждающей нагрузки для людей

Carrier E-20 Результаты:

Информация была введена на основе вышеуказанных уставок и уравнений в
Программа Carrier E-20 и были получены следующие результаты:

Охлаждающая нагрузка

Нагревательная нагрузка

Всего CFM

Охлажденная вода

Горячая вода

300 тонн

2100 МБХ

куб. Футов в минуту

720 галлонов в минуту

210 галлонов в минуту

.

Испарение с водной поверхности

Испарение воды с водной поверхности — например, из открытого резервуара, плавательного бассейна и т.п. — зависит от температуры воды, температуры воздуха, влажности воздуха и скорости воздуха над поверхностью воды.

Количество испарившейся воды можно выразить как:

г с = Θ A (x с — x) / 3600 (1)

или

г ч = Θ A (x с — x)

где

г с = количество испарившейся воды в секунду (кг / с)

г ч = количество испарившейся воды в час (кг / ч)

Θ = ( 25 + 19 v ) = коэффициент испарения (кг / м 2 ч)

v = скорость воздуха над водной поверхностью (м / с)

A = площадь водной поверхности (м 2 )

x с = максимальная влажность соотношение насыщенного воздуха при той же температуре, что и поверхность воды (кг / кг) (кг H 2 O в кг сухого воздуха)

x = соотношение влажности воздуха (кг / кг) (кг H 2 O в кг Сухого воздуха)

Примечание! Единицы для Θ не совпадают, так как это эмпирическое уравнение — результат опыта и экспериментов.

Необходимое теплоснабжение

Большая часть тепла или энергии, необходимых для испарения, берется из самой воды. Для поддержания температуры воды — в воду необходимо подводить тепло.

Необходимое количество тепла для покрытия испарения можно рассчитать как

q = h we g s (2)

где

q = подводимое тепло (кДж / с ( кВт))

h we = теплота испарения воды (кДж / кг)

Пример — Испаренная вода из плавательного бассейна

Имеется бассейн 50 м x 20 м с температурой воды 20 o С. Максимальный коэффициент насыщения влажности в воздухе над поверхностью воды составляет 0,014659 кг / кг. При температуре воздуха 25 o C и 50% относительной влажности коэффициент влажности в воздухе составляет 0,0098 кг / кг — см. Диаграмму Молье.

При скорости воздуха над поверхностью воды 0,5 м / с коэффициент испарения можно рассчитать как

Θ = (25 + 19 (0,5 м / с))

= 34.5 кг / м 2 h

Площадь бассейна можно рассчитать как

A = (50 м) (20 м)

= 1000 м 2

Испарение от поверхность может быть рассчитана как

г с = (34,5 кг / м 2 ч ) (1000 м 2 ) ((0,014659 кг / кг) — (0,0098 кг / кг) ) / 3600

= 0,047 кг / с

Теплота (энтальпия) испарения воды при температуре 20 o C составляет 2454 кДж / кг .Подвод тепла, необходимый для поддержания температуры воды в бассейне, можно рассчитать как

q = (2454 кДж / кг) (0,047 кг / с)

= 115,3 кВт

Потери энергии и необходимое количество тепла можно уменьшить на

  • уменьшение скорости воздуха над поверхностью воды — ограниченный эффект
  • уменьшение размера бассейна — не совсем практично
  • уменьшение температуры воды — не комфортное решение
  • снижение температуры воздуха — не комфортное решение
  • увеличение содержания влаги в воздухе — может увеличить конденсацию и повреждение строительных конструкций для закрытых бассейнов
  • удалить влажную поверхность — возможно с пластиковыми одеялами на поверхности воды снаружи время операции.Очень эффективный и часто используемый

Примечание! — во время работы в бассейне может резко увеличиваться испарение воды и необходимое количество тепла.

Чтобы снизить потребление энергии и избежать повреждения строительных конструкций из-за влаги, обычно используют устройства рециркуляции тепла с тепловыми насосами, передающими скрытое тепло из воздуха в воду в бассейне.

Калькулятор испарения с поверхности воды

.

Расчет водяного теплого пола, онлайн калькулятор теплопотери

Желаемая температура воздуха

Это комфортная для жильцов температура в помещении. Желаемая температура — очень индивидуальный параметр, ведь кому-то нравится высокая температура в помещении, а кому-то прохлада.

Европейские нормы указывают, что в спальне, кабинете, гостиной, столовой и кухне оптимальной является температура 20-24°С; в туалете, кладовой, гардеробной — 17-23°С; в ванной — 24-25°С.

Усредненно можно задать 20°С.

Вверх

Температура подачи / температура обратки

Температура подачи — температура теплоносителя в подающем коллекторе. Т.е. на входе в контур теплого пола.

Температура обратки — температура теплоносителя в обратном коллекторе (на выходе из контура).

 

 

Для того, чтобы теплый пол отапливал помещение, он должен отдавать тепло, т.е. температура подачи должна быть выше температуры обратки. Оптимально, если разница температуры подачи и обратки составляет 10°С (например, подача — 45°С, обратка — 35°С).

Для обогрева помещения температура подачи должна быть выше желаемой температуры в помещении.

Вверх

Температура в нижнем помещении

Эта температура необходима для учета тепла, идущего вниз, т.е. теплопотерь.

Если теплый пол располагается над помещением (нижний этаж, подвал), то используется температура, поддерживаемая в нем. Если пол располагается над грунтом или на грунте, то для расчета используется температура воздуха для самой холодной пятидневки года. Этот показатель автоматически подставляется для выбранного города.

Вверх

Шаг укладки труб теплого пола

Это расстояние между трубами, залитыми в стяжку пола. От шага укладки зависит теплоотдача теплых полов — чем меньше шаг, тем больше удельная теплоотдача, и наоборот.

Оптимальный шаг укладки труб теплого пола лежит в пределах 10-30 см. При меньшем шаге возможна отдача тепла из подачи в обратку. При большем — неравномерный прогрев пола, когда на поверхности пола над трубой ощущается тепло, а между трубами — холод.

Вверх

Длина подводящей магистрали теплого пола

Это сумма длин труб от подающего коллектора до начала контура теплого пола и от конца контура до обратного коллектора.

При размещении коллектора теплого пола в том же помещении, где и теплые полы, влияние подводящей магистрали незначительно. Если же они находятся в разных помещениях, то длина подводящей магистрали может быть большой и ее гидравлическое сопротивление может составлять половину сопротивления всего контура.

Вверх

Толщина стяжки над трубами теплого пола

Назначение стяжки над трубами теплых полов — воспринимать нагрузку от людей и предметов в отапливаемом помещении и равномерно распределять тепло от труб по поверхности пола.

Минимально допустимая толщина стяжки над трубой составляет 30 мм при наличии армирования. При меньшей толщине стяжка будет обладать недостаточной прочностью. Также, малая толщина стяжки не обеспечивает равномерный нагрев поверхности пола — возникают полосы горячего пола над трубой и холодного между трубами.

Заливать стяжку толще 100 мм не стоит, т.к. это увеличивает инерционность теплых полов, исключает возможность быстрого регулирования температуры пола. При большой толщине изменение температуры поверхности пола будет происходить спустя несколько часов, а то и суток.

Исходя из этих условий, оптимальная толщина стяжки теплого пола — 60-70 мм над трубой. Добавление в раствор фибры и пластификатора позволяет уменьшить толщину до 30-40 мм.

Вверх

Максимальная температура поверхности пола

Это температура поверхности пола непосредственно над трубой контура. По нормативным требованиям этот параметр не должен превышать 35°С.

Вверх

Минимальная температура поверхности пола

Это температура поверхности пола на равном расстоянии от труб (посередине).

Вверх

Средняя температура поверхности пола

Этот параметр является основным критерием расчета теплого пола в плане комфорта для жильцов. Он представляет собой среднее значение между максимальной и минимальной температурой пола.

По нормам в помещениях с постоянным нахождением людей (жилые комнаты, кабинеты и т.д.) средняя температура пола должна быть не выше 26°С. В помещениях с повышенной влажностью (ванные, бассейны) или с непостоянным нахождением людей температура пола может составлять до 31°С.

Температура пола в 26°С не обеспечивает ожидаемого комфорта для ступней. В частном доме, где никто не вправе владельцу указывать какой температурой обогревать жилье, можно настраивать среднюю температуру пола в 29°С. При этом ступни будут ощущать комфортное тепло. Поднимать температуру выше 31°С не стоит — это приводит к высушиваю воздуха.

Вверх

Тепловой поток вверх

Тепловой поток вверх — тепло, отдаваемое теплым полом на обогрев помещения.

Если водяной теплый пол является единственным источником тепла, то тепловой поток вверх должен немного превышать теплопотери помещения.

При использовании теплого пола в комбинации с радиаторами, он компенсирует лишь некоторую часть теплопотерь.

Вверх

Тепловой поток вниз

Это тепло, уходящее в перекрытие и нижнее помещение, т.е. тепловые потери. Тепловой поток вниз должен быть как можно меньше. Добиться этого можно увеличением толщины утеплителя.

Вверх

Суммарный тепловой поток

Мощность теплого пола, включающая полезное тепло (обогрев помещения) и теплопотери (тепловой поток вниз).

Вверх

Удельный тепловой поток вверх

Полезное тепло, идущее на обогрев помещения, выделяемое каждым квадратным метром теплого пола.

Вверх

Удельный тепловой поток вниз

Теплопотери каждого квадратного метра теплого пола.

Вверх

Суммарный удельный тепловой поток

Количество тепла, выделяемого каждым квадратным метром теплого пола, на обогрев помещения и на теплопотери вниз.

Вверх

Расход теплоносителя

Величина расхода необходима для правильной балансировки нескольких контуров теплых полов, подключенных к одному коллектору. Полученное значение нужно выставить на шкале расходомера.

Вверх

Скорость теплоносителя

От скорости движения теплоносителя по трубе теплого пола зависит акустический комфорт в отапливаемом помещении. Если скорость теплоносителя превышает 0,5 м/с, то возможно образование посторонних звуков от циркуляции теплоносителя. Снижения скорости теплоносителя можно добиться увеличением диаметра трубы или уменьшением ее длины.

Вверх

Перепад давления

По перепаду давления в контуре теплого пола (между подающим и обратным коллектором) подбирается циркуляционный насос. Напор насоса должен быть не меньше, чем перепад давления в самом нагруженном контуре. Если напор насоса ниже перепада давления в контуре, то следует выбрать более мощную модель или уменьшить длину контура.

Вверх

как рассчитать количество труб напольного обогрева

Система обогрева «тёплый пол» является хорошей альтернативой радиаторному отоплению. При правильной организации напольной магистрали в помещении не остаётся холодных зон.

Шаг трубы, м.


0.050.10.150.20.250.30.35

Труба


Pex-Al-Pex 16×2 (Металлопластик)Pex-Al-Pex 16×2.25 (Металлопластик)Pex-Al-Pex 20×2 (Металлопластик)Pex-Al-Pex 20×2.25 (Металлопластик)Pex 14×2 (Сшитый полиэтилен)Pex 16×2 (Сшитый полиэтилен)Pex 16×2.2 (Сшитый полиэтилен)Pex 18×2 (Сшитый полиэтилен)Pex 18×2.5 (Сшитый полиэтилен)Pex 20×2 (Сшитый полиэтилен)PP-R 20×3.4 (Полипропилен)PP-R 25×4.2 (Полипропилен)Cu 10×1 (Медь)Cu 12×1 (Медь)Cu 15×1 (Медь)Cu 18×1 (Медь)Cu 22×1 (Медь)

Напольное покрытие


ПлиткаЛаминат на подложкеПаркет на фанереКовролин

Тепло равномерно распространяется по комнате. Водяной или электрический контур спрятан под облицовкой, что даёт возможность выполнять любой дизайн в доме. Система отопления требует проекта и определённых расчётов.

Специалисты используют многочисленные таблицы, высчитывая теплопотери помещения, длину трубопровода, шаг укладки контура. Программисты облегчили работу строителей.

Все необходимые расчёты можно выполнить с помощью online-калькулятора. Как работает программа? Какими данными она оперирует?

Описание программы

Основной вопрос, который возникает при создании проекта напольного обогрева, сколько трубы необходимо для определённого помещения. На форумах предлагается выполнить несложный расчёт.

Определяют площадь обогреваемой поверхности пола. Для системы отопления выбирают трубу диаметром 16 мм или 20 мм. Оптимальный шаг витков при выкладывании контура 10-15 см. Если разделить данные площади на шаг укладки магистрали, то получают длину трубы. L длина трубы = S площадь /h шаг.

Калькулятор «тёплого пола» предусматривает не только площадь комнаты и длину шага витка напольного контура, но и другие условия, которые влияют на температуру воздуха в помещении, и на эффективность системы отопления.

Принимается во внимание теплопотери помещения. Для комнат, которые находятся на подвальном уровне или на 1 этаже, потребуется больше мощности от системы отопления. Теплопотери высокие. Они связаны с наличием входной двери, близостью фундамента.

Для помещений, находящихся, на 2-3 этажах, необходим менее мощный обогрев. Теплопотери незначительные. Внизу и вверху площадь отапливается, уличная дверь отсутствует.

Калькулятор расчёта водяного тёплого пола предусматривает характеристику обогреваемой площади: процент влажности, частоту использования дома; постоянное проживание или пребывание людей только в определённые дни; для кого предназначено помещение, для взрослых или для детей. В детских комнатах выдерживается средняя температура 20 0С, в гостиной – 22-24 0С, в спальне 18 0С, в ванной комнате 33 0С.

В программу вводят показатель площади обогреваемой поверхности, желаемый тепловой режим, тип теплоносителя, вода, антифриз.

Важны характеристики трубы для тёплого пола: медь, нержавеющая сталь, сшитый или термостойкий полиэтилен, диаметр контура. Учитывается длина труб, которые соединяют нагревательное оборудование с коллектором.

Один из блоков калькулятора посвящается характеристике «тёплого пола»: наличие утеплителей, гидроизоляционных материалов, толщина черновой и чистовой стяжки, клеевого раствора, наливного пола. Принимается во внимание материал для напольного финишного покрытия.

Плитка обладает высокой теплопроводностью. Она быстро отдаёт тепло. Паркет и ламинат имеют низкую теплопроводность. Данные покрытия не рекомендуют сильно нагревать.

Программа анализирует исходные показатели, делает определённые расчёты «тёплого пола»:

  • количество тепла, которое выделяется в помещении – общий тепловой поток; если он меньше, чем тепловые потери, то потребуются дополнительные нагревательные приборы;
  • кол-во тепла с 1 м2 тёплого водяного пола;
  • кол-во тепла с 1м2, направленного вниз, к фундаменту; если показатель превышает норму, то при проекте системы отопления предусматривают дополнительный слой теплоизоляции для чернового покрытия; это позволит уменьшить расход энергии для обогрева фундамента, направит тепловой поток вверх к полу;
  • какое суммарное количество тепла вырабатывается с 1 м2 и 1 пог. м напольного покрытия; определяется минимальная, максимальная и средняя температура пола;
  • средняя температура теплоносителя; скорость его движения; расход жидкости;
  • расчет трубы; длина, тепловая нагрузка;
  • линейные потери; снижение напора теплоносителя по всей длине магистрали; максимальное давление 20 000 Па; давление уменьшают, выбирая трубу большего диаметра.

В проекте для «тёплого пола» указываются материалы, которые используются для формирования уровней пола над жидкостной магистралью и под трубопроводом.

Учитывают характеристику гидроизоляции и утеплителя, толщину слоя, наличие отражающего экрана. Если выполняется бетонная стяжка, то предусматривается тип бетона: лёгкий с пластификаторами, утяжелённый с армированной сеткой.

Как работает калькулятор?

В первую очередь проводится подсчёт теплопотерь. Для этого вводят название региона и населённого пункта. Указывается площадь комнаты, высота стен, наличие внутренних перегородок, высота потолков, количество окон и их размер.

Обозначается, с какой стороны находятся внешние стены комнаты: север, юг, восток, запад. Заполняется информация об утеплении стен, расположение комнаты: подвальный уровень, этаж.

Исходные данные: дом находится в г. Волгограде.

  • Комната, в которой предусматривается водяное отопление, располагается с северной стороны, на 2 этаже.
  • Стены утеплены плохо.
  • Общая площадь помещения 20 м2.
  • В комнате находится одна перегородка.
  • Остекление – двухкамерное; общая площадь окон 3 м2.

Расчётные данные:

  • общие теплопотери составят 2323 Вт; удельные теплопотери – 116 кВт/м2;
  • средняя температура воздуха холодных суток -27 0С; в неделю -25 0С;
  • продолжительность сезона – 176 дней.

Данные используются при калькуляции для водяного тёплого пола. Дополнительно указывается желаемая температура в помещении, температура теплоносителя при выходе из котла и в обратном контуре, длина подводящей магистрали.

Исходные данные:

  • общие потери 2323 Вт;
  • температура воздуха – 20 0С;
  • t0 теплоносителя при выходе 30 0С, на «обратке» – 23 0С;
  • длина труб от котла до коллектора – 10 м;
  • трубы из сшитого полиэтилена 16 мм, толщина стенки 2,2 мм;
  • облицовка – кафель;
  • толщина бетонной стяжки чистового основания 5 см; чернового покрытия 8 см;
  • в качестве утеплителя использованы полистирольные плиты толщиной 3 см.

Расчётные данные калькулятора тёплого пола:

  • рекомендуемая площадь обогрева – 16 м2;
  • длина трубы – 170 м; магистраль разделяют на 3 контура по 63,33 м;
  • шаг укладки – 10 см;
  • общий тепловой поток – 684,34 Вт; программа рекомендует установить дополнительный источник обогрева мощностью – 1638,66 Вт;
  • t0ср. теплоносителя 26,5 0С;
  • t0ср. пола – 23,29 0С; температура является комфортной;
  • линейные потери давления петли – 1324,3 Па; программа указывает, что показатель в норме;
  • скорость движения теплоносителя – 0,089 м/с;
  • общий объём теплоносителя в системе 17,96 л.

В конце расчёта даются рекомендации. В данном случае рекомендуют увеличить скорость теплоносителя за счёт уменьшения диаметра трубы. Калькулятор не только рассчитывает систему отопления, но и выполняет чертёж на основании полученных данных, выводит все уровни «тёплого пола» в разрезе с указанием соответствующих размеров.

При изменении каких-либо данных, программа корректирует расчёт. Если для облицовки пола используется не кафель, а ламинат, то объём теплового потока уменьшается. Средняя температура пола снижается на градус. Рекомендуется дополнительный обогрев большей мощности.

Самостоятельно рассчитать напольную систему отопления сложно. При использовании online-калькулятора получают не только необходимые показатели для монтажа жидкостной магистрали, но и определённые рекомендации по настройке всех элементов контура.

Отпадает необходимость выполнять чертёж на бумаге вручную. Его можно распечатать на принтере.

YouTube responded with an error: The request cannot be completed because you have exceeded your <a href=»/youtube/v3/getting-started#quota»>quota</a>.

Загрузка…

Калькулятор расчета теплого водяного пола

О преимуществах тёплого водяного пола сейчас знают если не все, то очень многие люди. А те, кто хоть раз попробовал, что это такое, никогда не откажутся сделать тёплый пол у себя в доме, если появится такая возможность. Ощущение тепла от обычно холодного пола (из керамической плитки или мрамора) оставляет очень позитивные впечатления. И сегодня, во время ремонтных работ, даже непрофессионалы устанавливают тёплый пол своими руками. Чтобы сделать это правильно, надо освоить несложную методику монтажа, а также всё рассчитать. При проектировании удобно использовать калькулятор расчёта теплого водяного пола, который можно найти ниже.

Зачем рассчитывать параметры тёплого пола?

Так как помещения, в которых производится установка тёплого пола, иногда кардинально разные, как и цели такого монтажа, то без правильного расчёта невозможно получить исправно работающий и выполняющий свои функции контур напольного отопления. Тёплый пол может быть проложен в многоквартирном или частном доме, подключён к центральному отоплению или индивидуальном котлу. В зависимости от этого и многих других факторов проект тёплого пола будет отличаться. Если не произвести правильный расчёт, водяной пол может просто плохо нагревать напольное покрытие и быть малополезным, особенно если данная конструкции используется в качестве основной при отоплении.

Учитывать и рассчитывать все нюансы можно вручную, с помощью листика бумаги, карандаша и обычного калькулятора. Но гораздо проще сделать это с помощью специализированного калькулятора расчёта теплого водяного пола.

Как работает калькулятор расчёта теплого водяного пола?

Калькулятор расчета теплого водяного пола представляет программу, которая производит расчёт на основе метода коэффициентов. Это означает, что за эталон берётся какой-то условный идеальный тёплый пол, а при добавлении определённых коэффициентов рассчитывается любой другой.

Программа позволяет вводить такие основные данные:

  • длину и ширину помещения,
  • его тепловую мощность,
  • температуру теплоносителя в подающей и обратной трубах,
  • длину подводящей магистрали,
  • шаг укладки трубы, её толщину и тип,
  • толщину стяжки и тип финишного покрытия пола, а также желаемую температуру воздуха в комнате.

Калькулятор расчета теплого водяного пола

 

]]>

Температура подачи, oC.

Температура обратки, oC.

Шаг трубы, м.

0.050.10.150.20.250.30.35

Труба

Pex-Al-Pex 16×2 (Металлопластик)Pex-Al-Pex 16×2.25 (Металлопластик)Pex-Al-Pex 20×2 (Металлопластик)Pex-Al-Pex 20×2.25 (Металлопластик)Pex 14×2 (Сшитый полиэтилен)Pex 16×2 (Сшитый полиэтилен)Pex 16×2.2 (Сшитый полиэтилен)Pex 18×2 (Сшитый полиэтилен)Pex 18×2.5 (Сшитый полиэтилен)Pex 20×2 (Сшитый полиэтилен)PP-R 20×3.4 (Полипропилен)PP-R 25×4.2 (Полипропилен)Cu 10×1 (Медь)Cu 12×1 (Медь)Cu 15×1 (Медь)Cu 18×1 (Медь)Cu 22×1 (Медь)

Напольное покрытие

ПлиткаЛаминат на подложкеПаркет на фанереКовролин

Толщина стяжки над трубой, мм.

Удельная тепловая мощность, Вт/м2

Температура поверхности пола (средняя), oC

Удельный расход теплоносителя, (л/ч)/м2

 

Просмотры: 426

Расчет длины трубы теплого водяного пола по площади и шагу петли

Калькулятор расчета метража трубы теплого водяного пола

5 (100%) голосов: 1

В настоящее время теплые водяные полы пользуются широким спросом у пользователей. Монтаж такой системы — достаточно сложный, но многие владельцы квартир и частных домов решают осуществить процедуру самостоятельно, не прибегая к помощи специалистов. Первое, что необходимо сделать — это выполнить расчет длины трубы теплого водяного пола.

Осуществить расчет метража трубы проще при помощи онлайн калькулятора. Все, что вам необходимо знать, это:

  1. Площадь помещения, где будет производиться укладка. Здесь вы учитываете размер всего помещение, кроме тех мест, где стоит мебель и другие предметы, препятствующие отводу тепла.
  2. Шаг петли, величина шага находится в пределах от 10 до 30 см. Когда шаг слишком большой, образуется «эффект зебры», это означает, что пол прогревается неравномерно. Величину шага определяют проектировщики.
  3. Также стоит принимать во внимание и материал, из которого изготовлено изделие.

Самым важным условием проведения вычисления теплого водяного пола — является точное определение длины трубы, т.к. именно от нее напрямую зависит теплоотдача системы теплого водяного пола. Подсчитав точные показатели, вы избежите перерасхода трубы и получите оптимальные данные.

Для каждого контура теплого пола нужно производить индивидуальный расчет.

Не стоит забывать, что максимальная длина контура на трубе, диаметр которой составляет 16 мм, не должна быть больше 80 м, а на трубе, диаметр которой равен 20 мм — не более 100 м. Если в итоге вы получаете результат, превышающий эти показатели, нужно разбить длину на разные контуры.

Варианты укладки теплого водяного пола

Если вам помог калькулятор, то добавьте его в закладки, чтобы не потерять! Сочетание клавиш CTRL+D вам в этом поможет.

Калькуляторы размеров труб, перепада давления, подогрева пола и отопления в Mac App Store

Повышение энергоэффективности систем отопления. Подбор размеров труб и расчет падения давления для систем отопления, расчет характеристик системы теплого пола, расчет размеров гидравлического сепаратора и расчет экономии затрат для различных источников тепла. Уменьшите потребление энергии и сэкономьте деньги на отоплении.

Этот пакет приложений позволяет:
— Подбирать размеры труб и рассчитывать потери давления для систем водяного отопления и охлаждения;
— Расчет характеристик систем водяного теплого пола;
— Выполнение подбора гидравлического сепаратора для систем водяного отопления или охлаждения;
— Рассчитать стоимость отопления для различных источников тепла, включая тепловые насосы, газовые котлы, масляные котлы, котлы на дровах, котлы на пеллетах и ​​котлы на древесной щепе.Оцените экономию на счетах за отопление при замене котла или посмотрите, какой источник обеспечивает дешевое отопление, и решите, какой генератор установить.

Приложения, включенные в комплект:

1. Размер трубы отопления

Мгновенно оцените требуемый диаметр трубы закрытой гидравлической системы отопления или охлаждения.

Введите требуемую тепловую мощность, температуру подающей и обратной линии. Выберите материал трубы. Рекомендуемый диаметр трубы сразу отображается как стандартный DN.

Дополнительно выберите диаметр трубы и укажите длину участка трубы и фитинги.Результаты включают расход воды, скорость, падение давления и могут использоваться для определения параметров циркуляционного насоса.

Примечание: поддерживаются только метрические единицы.

2. Гидравлический сепаратор

Гидравлический сепаратор используется для разделения первичного и вторичного контуров в системах отопления и охлаждения. Он широко используется в сочетании с газовыми котлами и тепловыми насосами со встроенными циркуляционными насосами.

Установите правильный размер гидравлического сепаратора в одно мгновение. Необходимо указать два входных параметра: тепловую мощность и минимальную разницу температур, необходимую в системе отопления.

3. Полы с подогревом

Определите необходимую температуру воды, количество петель труб, тепловые потери и другие параметры системы водяного теплого пола.

Приложение «Подогрев пола» упрощает проектирование и понимание систем водяного теплого пола.
Приложение подходит для расчета систем водяного теплого пола с трубами, проложенными в слое стяжки под напольным покрытием, и может использоваться в широком диапазоне условий: небольшие или большие системы, разные напольные покрытия, разные места помещения, разная толщина изоляции. и проводимости и т. д.

Современные энергосберегающие и пассивные дома требуют более низкой температуры воды, чем здания с плохой теплоизоляцией. Это приложение поможет определить, насколько низко.

Примечания:
— только метрические единицы;
— приложение не предлагает графическую разводку труб;

4. Стоимость отопления

Оцените годовые затраты на отопление при замене существующего теплогенератора (котла) на новый и сравните затраты на отопление для различных источников / генераторов тепла. Посмотрите, какой источник тепла обеспечивает самое дешевое отопление для вас.Если вы подрядчик или установщик, помогите своему клиенту решить, в какой источник тепла инвестировать.

Охватываемые источники тепла / генераторы:
— топочный мазут (котлы с конденсацией или без),
— природный газ (котлы с конденсацией или без нее),
— сжиженный нефтяной газ (котлы с конденсацией или без нее),
— дрова,
— дрова щепа,
— пеллеты,
— электричество,
— тепловые насосы.

Примечания:
— только метрические единицы;
— работает только при замене существующего теплогенератора.Расчет основан на текущем потреблении системы.

Средства управления расчетами для теплого пола

Расчет необходимых компонентов системы для теплого пола можно выполнить в несколько шагов. Конечно, этот расчет также можно использовать для отопления стен и потолка.

Шаг 1: Расчет отопительных контуров и распределителя

Длина трубы отопительного контура не должна превышать 100 м. Так как расстояние между теплыми полами QuickTherm составляет 166 мм, на 1 м² укладывается 6 метров трубы.Это означает, что вам нужен контур на 15 м² поверхности нагрева. Номер отопительного контура определяет размер распределителя отопительного контура. Распределитель отопительных контуров QuickTherm может вместить до 12 отопительных контуров.

Шаг 2: Расчет принадлежностей

Каждый отопительный контур должен быть подключен к подающей и обратной линии распределителя отопительного контура. Для этого вам понадобится один комплект евроконусных резьбовых соединений для каждого отопительного контура. Кроме того, для каждого отопительного контура требуется исполнительный механизм, чтобы впоследствии можно было управлять подогревом пола с помощью термостата.

Шаг 3: Расчет соединительных планок и термостатов

Требуется термостат на отапливаемое помещение и одна соединительная планка на распределитель. Соединительная планка соединяет термостаты с исполнительными механизмами распределителя отопительного контура.

Шаг 4: Шкаф распределителя отопительного контура (опция)

Опционально для распределителя можно использовать распределительный шкаф (навесной или встраиваемый).

Сводка

  • Распределитель отопительного контура — расчет типоразмера
    На каждые 15 м² площади отопления требуется один отопительный контур.
  • Отопительные контуры — расчет регулирующих принадлежностей
    Для каждого отопительного контура необходим один комплект резьбовых соединений Eurocone.
    Для каждого отопительного контура требуется один привод.
  • Соединительная планка / термостаты — регулирование отдельных отопительных контуров
    Для каждого распределителя отопительного контура требуется одна соединительная планка.
    Требуется один термостат на комнату.
  • Дополнительно: шкаф для распределителя отопительного контура
    Вы можете использовать один распределительный шкаф на один распределитель отопительного контура

Здесь вы найдете пример расчета.

Как рассчитать правильный расход для любой гидравлической системы —

В сфере водяного отопления и охлаждения регулярно используются определенные формулы. Важный из них касается системы, которая использует воду как средство обеспечения комфорта в галлонах в минуту. Вода — это путь, по которому тепло распределяется из котельной туда, где находятся люди.

От количества воды зависит расход и галлон в минуту. Точная оценка теплопотерь в здании очень важна для определения расчетных условий нагрузки.t ° F

Формула указывает на температуру воды 60 ° F. Однако, поскольку вода 60 ° F слишком холодная для системы водяного отопления и слишком теплая для системы охлажденной воды, для расчета правильного расхода формула должна основываться на более подходящих температурах воды для каждого типа системы, например удельная теплоемкость воды или изменения плотности, возникающие при изменении температуры воды. Кроме того, объем воды меняется, когда она становится горячее или остывает. Как видно из следующего примера, различия настолько минимальны, что стандартная формула отлично работает для всех наших систем отопления и охлаждения.Тогда T будет:

8,04 x 60 x 1,003 x 20 = 9677 BTUH

Чистый эффект незначителен, но есть еще один фактор, который необходимо учитывать для полной оценки. С повышением температуры воды она становится менее вязкой, и поэтому падение давления в ней уменьшается. Когда вода циркулирует при температуре 200 ° F, соответствующее падение давления или «потеря напора» составляет около 80% воды при температуре 60 ° F для типичных небольших гидравлических систем. При расчете с использованием системной кривой расход увеличивается примерно на 10.5%. Теперь вы можете умножить новую рассчитанную теплопередачу на процент увеличения потока:

1,105 x 9677 = 10 693 BTUH

Как вы можете видеть, что касается теплопередачи, простой подход «круглого числа» приведет к расчетным потокам, очень близким к потокам «с поправкой на температуру», при условии, что результаты подхода «круглого числа» не будут скорректированы из исходная основа 60 ° F как для теплопередачи, так и для перепада давления в трубопроводе. Факторы «плюс» и «минус» очень сильно уравновешивают друг друга.

В этой статье представлена ​​точная формула для расчета расхода
в галлонах в минуту (галлонов в минуту) для систем водяного отопления
и систем охлаждения.

Выбор подходящего циркуляционного насоса
галлонов в минуту играет важную роль в обеспечении ожидаемой работы вашей системы отопления. Вам нужен циркуляционный насос подходящего размера, чтобы отводить тепло от котла и доставлять его в систему, где находятся люди.При выборе подходящего циркуляционного насоса вам необходимо не только знать правильный галлон в минуту, но также необходимо знать необходимое падение давления для циркуляции необходимого количества галлонов в минуту.

Когда вода течет по трубам и излучению, она «трется» о стенку трубы, вызывая сопротивление трения. Это сопротивление может повлиять на производительность системы обогрева за счет уменьшения желаемого расхода циркулирующего потока, тем самым уменьшая теплопроизводительность системы. Зная, каким будет это сопротивление, вы можете выбрать циркуляционный насос, который сможет преодолеть падение давления в системе.

Обычно в современных системах мы используем «футы на голову» для описания количества энергии, необходимого для того, чтобы требуемый галлон в минуту был доставлен в систему. Существуют таблицы размеров труб, которые рассчитывают падение давления в футах потери энергии для любого расхода через трубу любого размера. Существуют стандартные методы работы с трубопроводами, в которых промышленность ссылается на ограничение количества галлонов в минуту для данного размера трубы. Это основано на двух причинах:

1. Проблемы скорости (насколько быстро вода движется внутри трубы), которые могут создавать проблемы с шумом, а в экстремальных условиях — проблемы с эрозией.

2. Требуемая потеря напора может стать настолько большой, что требуемая производительность НАПОРА циркуляционного насоса делает выбор системы очень «недружелюбным», что может привести к проблемам регулирующего клапана и шума скорости. Промышленным стандартом является выбор трубы с сопротивлением трению от 1 до 4 на каждые 100 футов трубы.

Bell & Gossett’s System Syzer помогает определять
галлонов в минуту (галлонов в минуту).

Кстати, Bell & Gossett уже более 50 лет предоставляет инструмент для индустрии гидроники под названием System Syzer.Этот инструмент очень полезен для расчета галлонов в минуту, правильного размера трубы для поддержки галлонов в минуту и ​​соответствующих потерь давления и скорости для любого применения.
Если у вас есть какие-либо вопросы или комментарии, напишите мне по адресу [адрес электронной почты защищен], подпишитесь на меня в Twitter по адресу @Ask_Gcarey или позвоните мне по телефону FIA 1-800-423-7187. ICM

Максимальная длина трубы для теплого пола. Как рассчитать водяной теплый пол? Сколько метров оптимальная длина петли

Максимальная длина трубы для теплого пола.Как рассчитать водяной теплый пол? Сколько метров оптимальная длина петли

Теплый пол прекрасное решение для благоустройства своего жилья. Температура пола напрямую зависит от длины скрытых в стяжке труб теплого пола. Труба в полу укладывается петлями. Фактически от количества петель и их длины складки и общая длина трубы. Понятно, что чем длиннее труба в том же объеме, тем теплее пол. В этой статье поговорим об ограничениях по длине одного контура теплого пола.

Примерные расчетные характеристики для труб диаметром 16 и 20 мм составляют: 80-100 и 100-120 метров соответственно. Эти данные приведены приблизительно для приблизительных расчетов. Рассмотрим процесс монтажа и заливки теплых полов более подробно.

Последствия превышения длины

Разберемся, к каким последствиям может привести увеличение длины трубы теплого пола. Одна из причин — увеличение гидравлического сопротивления, что создаст дополнительную нагрузку на гидронасос, в результате чего он может выйти из строя или просто не справиться с возложенной на него задачей.Расчет сопротивления состоит из множества параметров. Условия, параметры укладки. Материал использованных труб. Вот три основных: длина петли , количество изгибов и тепловая нагрузка на нее .

Стоит отметить, что тепловая нагрузка с увеличением петли растет. Также увеличивает расход и гидравлическое сопротивление. Скорость потока имеет ограничения. Оно не должно превышать 0,5 м / с. Если мы превысим это значение, в трубопроводной системе могут возникнуть различные шумовые эффекты. Увеличивается и основной параметр, для которого производится данный расчет.Гидравлическое сопротивление нашей системы. У него также есть ограничения. Они составляют 30-40 кПа на петлю.

Следующая причина заключается в том, что при увеличении длины трубы теплого пола возникает давление на стенки трубы, вызывающее удлинение этой области при нагревании. Трубе, находящейся в стяжке, некуда деваться. И она начнет сужаться в самом слабом месте. Сужение может вызвать перекрытие потоков охлаждающей жидкости. У труб из разного материала разный коэффициент расширения.Например, в полимерных трубах очень высокий коэффициент расширения. Все эти параметры необходимо учитывать при устройстве теплого пола.

Поэтому заливать стяжку теплого пола необходимо гофрированными трубами. Давить воздух лучше с давлением около 4 бар. Таким образом, когда вы наполните систему водой и начнете ее нагревать, труба в стяжке будет расширяться.

Оптимальная длина трубы

Учитывая вышеперечисленные причины, с учетом поправок на линейное расширение материала труб, принять за основу максимальную длину труб теплого пола по контуру:

В таблице указаны оптимальные размеры длины теплого пола, подходящие для всех режимов теплового расширения труб в различных режимах работы.

Примечание: Б. для жилых домов достаточно трубы 16 мм. Не следует использовать больший диаметр. Это приведет к огромной трате энергии.

1.
2.
3.
4.
5.
6.

Правильный расчет — залог успеха в любом бизнесе. Однако не так-то просто реализовать на практике все задумки. Это заявление полностью относится к сообщениям, которые нужно создать. Вы можете рассчитывать только с точностью до миллиметров, но все же проверка полученных данных будет необходима на каждом этапе работы, так как все полностью учесть невозможно.К тому же в каждой квартире свои особенности поверхности пола, поэтому часто бывает сложно учесть все изгибы и впадины. Однако не стоит отчаиваться, ведь правильно установить систему теплого пола хоть и сложно, но реально.

Как установить трубы отопления

Подземная водопроводная система состоит из множества элементов, главным из которых являются трубы, отводящие тепло под полом всего дома.

Исходя из того, насколько удобнее мастеру, можно организовать общение в 4-х вариантах:

  • Змея.
  • Уголок змейки.
  • Двойная змея.
  • Улитка.

Правильный расчет системы отопления — Задача сложная, но вполне выполнимая при пошаговом подходе. Учесть абсолютно все нюансы при установке теплого пола проблематично, поэтому стоит обратить внимание на самые важные характеристики, а именно длину труб и объем воды в них. Кроме того, стоит помнить, что даже незначительное превышение длины петли в 100 м может серьезно навредить системе и выдать выход далеко от ожидаемой температуры.Модель двойного киннинга, в свою очередь, будет намного эффективнее, что позволит отдать дом без особых хлопот и с меньшим потреблением ресурсов.

Практически в каждом загородном доме обязательно монтируется теплый пол. Перед тем, как создать такой обогрев, производится расчет необходимой длины трубы.

В каждом частном доме автономная система теплоснабжения. Если позволяет планировка помещений, то владельцы таких загородных владений сами монтируют теплые водяные полы.

Конечно, установку такого пола можно произвести и в обычной квартире, но эта работа отличается большой сложностью. Владельцам и сотрудникам предстоит решить множество проблем. Основной сложностью станет подключение трубы к действующей системе теплоснабжения. Установить дополнительный бойлер в малогабаритной квартире просто невозможно.

Исходя из правильности этого расчета, количество тепла зависит от помещения, которое необходимо ввести в комнату, чтобы в ней всегда была комфортная температура.Расчеты помогут определить мощность теплого пола, а также помогут сделать правильный выбор бойлера и насоса.

Выполнить такой расчет очень сложно. При этом необходимо учитывать довольно много разных критериев:

  • Сезон;
  • Температура воздуха на улице;
  • Тип номера;
  • Количество и размеры окна;
  • Покрытие пола.
  • Утепление стен;
  • Где комната находится внизу или на верхних этажах;
  • Альтернативные источники тепла;
  • Оргтехника;
  • Освещение.

Для облегчения выполнения данного расчета взяты средние значения. Если в доме стеклопакеты и сделана хорошая теплоизоляция, этот параметр будет примерно 40 Вт / м2.

Теплые здания с небольшой теплоизоляцией постоянно теряют около 70-80 Вт / м2.

Если брать старый дом, резко возрастают теплопотери и приближаются к 100 Вт / м2.

В новых коттеджах, где не производится утепление стен, где установлены панорамные окна, потери могут составить около 300 Вт / м2.

Выбрав примерную стоимость для своего помещения, можно приступить к расчету восполнения теплопотерь.

Как определить оптимальную температуру в помещении

В этом случае особых сложностей не возникает. Для ориентации вы можете использовать рекомендуемые значения или придумать свои. И обязательно нужно учитывать напольное покрытие.

Пол в жилом помещении должен нагреваться до 29 градусов. При расстоянии от внешних стен более полуметра температура пола должна достигать 35 градусов.Если в помещении постоянно повышенная влажность, потребуется нагреть половую поверхность до 33 градусов.

Если в доме настелен деревянный паркет, нельзя нагревать пол выше 27 градусов, так как паркет может испортиться.

Ковер способен задерживать нагрев, он дает возможность повышать температуру примерно на 4-5 градусов.

Как производится расчет

Расчет трубы для теплого пола производится по следующей схеме. На один квадратный метр поверхности пола требуется 5 метров трубы.Длина ступеньки должна быть 20 см. Необходимое количество рассчитывается по формуле:

  • L = S / N x 1,1
  • Площадь — S:
  • АКЦИОНЕРНАЯ СТУПЕНЬ — N;
  • Труба запасная, для создания поворотов — 1.1.

Для большей точности расстояние от коллектора до пола добавлено и умножено на два. Пример расчета длины трубы толстого пола:

  • Площадь дома — 15 кв. м;
  • Длина от коллектора до пола — 4 м;
  • Шаг штабелирования — 0.15м;
  • Получается: 15 / 0,15 х 1,1 + (4 х 2) = 118 м.

Расчет длины контура

Для расчета длины контура необходимо учитывать диаметр трубы и материал, из которого она изготовлена. Возьмем, к примеру, металлопластиковую трубу диаметром 16 дюймов. Чтобы теплый пол хорошо функционировал, длина водяного контура должна быть не более 100 метров. Наиболее подходящей считается длина для такой трубы 75-80 метров.

Если берется 18 мм, из полиэтилена, длина водяного контура должна быть в пределах 120 метров. В основном труба равна 90-100 метрам.

Расход трубы для теплого пола из металлопластиковой трубы 20 мм составит 100-120 метров.

При выборе трубы необходимо учитывать площадь помещения. Надо сказать, что материал и способ укладки сильно влияют на качество теплого пола и его долговечность. Практика показала, что самым лучшим материалом для утепления будут металлопластиковые трубы.

Расчет количества контуров

Если учесть все правила, становится понятно, что для небольших помещений достаточно одного шлейфового контура. Когда площадь комнаты намного больше, нужно разделить ее на секции в соотношении 1: 2. Другими словами, ширина воды будет меньше ее длины, ровно наполовину. Для определения количества сайтов необходимо знать следующие параметры:

  • Шаг 15 см — площадь 12 кв. метры;
  • 20 см — 16 кв.метры;
  • 25 см — 20 кв. метры;
  • 30 см — 24 кв. метров.

Иногда область подчеркивания делают длиннее 15 метров. Мастера советуют указанные значения увеличить еще на 2 кв. метр.

Можно ли смонтировать теплый пол с разными петлями?

Идеальным считается теплый пол, где каждая петля имеет одинаковую длину. Это позволит вам не заниматься дополнительной настройкой, вам не нужно регулировать баланс.

Конечно, длина контура может быть одинаковой, но это не всегда выгодно.

Например, объект состоит из нескольких помещений, в которых необходима установка теплого пола. Одно из таких помещений — санузел площадью 4 квадратных метра. метр. Общая длина трубы этого контура с учетом расстояния до коллектора будет равна 40 м. Конечно, никто не приспособится к такому размеру, поделив полезную площадь под 4 квадратных метра.метр. Это деление будет совершенно ненужным. Ведь есть специальная балансировочная фурнитура, с помощью которой можно выравнивать напор контуров.

Сегодня также можно произвести расчет с целью определения максимальной длины длины трубы относительно каждого контура с учетом типа оборудования и площади объекта.

Мы не будем рассказывать вам, как производятся эти сложные вычисления. Просто при устройстве теплого пола разброс длины трубопровода отдельного контура принимают в пределах 30-40%.

Кроме того, при необходимости появляется возможность «манипулировать» диаметрами труб. Возможность смены шага установки, большие квадраты Разбейте на несколько средних кусочков.

Если комната очень большая, нужно ли создать несколько контуров?

Конечно, теплый пол в таких помещениях лучше разделить на части и смонтировать по нескольким контурам.

Такая потребность связана с разными причинами:

  1. Небольшая длина трубы позволит предотвратить появление «запертой петли», когда циркуляция теплоносителя становится невозможной;
  2. Площадь бетонного участка должна быть не более 30 кв.метров. Длина ее сторон должна быть в соотношении 1: 2. Один из концов плиты должен иметь длину менее 8 метров.

Заключение

Изначально главное знать исходные данные своего помещения, а формулы помогут определить, сколько труб должно быть на 1 м2 теплого пола.

По теплому полу ходить приятно, нет дискомфорта от холода под ногами и духоты наверху комнаты. Грамотно оборудованная система позволяет равномерно утеплить все площади комнат, создавая комфорт и экономя средства на отопление.Монтаж теплого пола относительно прост, но эффективность отопительного контура полностью зависит от правильности расчетов при составлении проекта.

Чтобы теплый пол создавал нужный микроклимат и не стал причиной неудобств или несчастных случаев, помещение, в котором будет установлен этот отопительный контур, должно соответствовать следующим требованиям:

  • высота потолков черного пола должна быть такой, чтобы ее уменьшение на 20 см не доставляло дискомфорта;
  • дверной проем должен иметь высоту не менее 2.1 м;
  • черновой пол должен быть достаточно прочным, чтобы выдерживать цементную стяжку, которую замыкают тепловым контуром;
  • если черновой пол уложен на землю или под утепленным помещением имеется неотапливаемое, необходимо проложить дополнительный слой утеплителя с экранирующим покрытием;
  • Поверхность, на которую устанавливается тепловой контур и все составляющие «пирога» теплого пола, должна быть гладкой и чистой.

При соблюдении вышеуказанных требований система «теплый пол» будет установлена ​​без проблем.Однако его эффективность зависит не только от размеров помещения, но и от других его характеристик, учет которых поможет выполнить следующие рекомендации:

  • Стены являются основным источником теплопотерь, поэтому перед расчетом и установкой системы отопления необходимо хотя бы приблизительно рассчитать объем тепловых потерь. Если полученная цифра окажется выше 100 Вт на квадратный метр, стены желательно утеплить, чтобы не переплачивать за отопление;
  • Тепловой контур не должен попадать под установку массивной мебели и тяжелого стационарного оборудования.Постоянное сильное давление на пол приведет к повреждению труб или кабелей системы отопления и выведет ее наружу.
  • Для равномерного прогрева помещения необходимо, чтобы такие неотапливаемые зоны занимали не более 30% площади пола. Поэтому перед проведением расчетов выполняется чертеж помещения в масштабе, и отмечается на этом чертеже место, которое следует оставить неуслышанным. Затем рассчитывается общая рабочая площадь — она ​​должна составлять 70% и более от общей.
  • Необходимо рассчитать оптимальную форму, длину и шаг теплового контура и его мощность, а также выполнить чертеж с указанием мест подключения к системе отопления, направления потока теплоносителя.

Способы установки системы «Теплый пол»

Для правильного функционирования данной системы отопления важна четкая последовательность так называемого «пирога» теплого пола.

Тепловой контур размещается на предварительно нагретой и водонепроницаемой поверхности, а также поверх залитой или засыпающей цементной стяжки, поверх которой укладывается чистовое покрытие пола.Вышеуказанные слои — оболочка торта — потребуются в обоих случаях. Они защищают систему от внешних воздействий и повышают ее эффективность.

Во избежание лишних затрат и технологических ошибок, которые могут привести к частичной или полной переделке системы своими руками, расчет водяного теплого пола производится заранее перед укладкой. Требуются следующие вводные данные:

  • Материалы, из которых построено жилье;
  • Наличие других источников тепла;
  • Площадь номера;
  • Наличие наружной теплоизоляции и качественного остекления;
  • Районное расположение дома.

Также необходимо определить, какая максимальная температура воздуха в помещении требуется для комфорта жильцов. В среднем рекомендуется делать расчет контура водяного пола из расчета 30-33 ° С. Однако такие высокие показатели при эксплуатации могут и не понадобиться, максимально комфортно человек себя чувствует при температуре до 25 градусов. .

В случае использования в доме дополнительных источников тепла (кондиционер, центральная или отопительная система и т. Д.)) расчет теплого пола можно ориентироваться на средние максимальные показатели 25-28 ° С.

Совет! Подключать теплые водяные полы своими руками напрямую через систему центрального отопления категорически не рекомендуется. Желательно использовать теплообменник. Идеальный вариант — полностью автономное отопление и подключение теплых полов через коллектор к котлу.

КПД системы напрямую зависит от материала труб, по которым будет перемещаться теплоноситель.Используйте 3 разновидности:

  • Медь;
  • Полиэтилен или прошитый полипропилен;
  • Металлопластик.

Вт. Медные трубы Максимальная теплоотдача, но довольно высокая стоимость. Полиэтилен I. Полипропиленовые трубы Они обладают низкой теплопроводностью, но относительно дешевы. Оптимальный вариант по соотношению цены и качества — металлопластиковые трубы. У них низкая теплопередача и приемлемая цена.

Опытные специалисты в первую очередь учитывают следующие параметры:

  1. Определение значения искомой t в помещении.
  2. Правильно рассчитать теплопотери дома. Для этого можно воспользоваться программами-калькуляторами или пригласить специалиста, но можно произвести приблизительный подсчет теплопотерь самостоятельно. Простой способ рассчитать поле теплой воды и теплопотери в помещении — это среднее значение теплопотерь в помещении — 100 Вт на 1 кв. Метр с учетом высоты потолка не более 3 метров и отсутствие прилегающих неотапливаемых помещений. Для угловых комнат и тех, в которых два и более окон — теплопотери рассчитываются из расчета 150 Вт на 1 кв.М. Метр.
  3. Расчет Сколько будут теплопотери по контуру на каждый м2 обогреваемой водопроводной системы.
  4. Определение расхода тепла на М2, исходя из материала декоративного покрытия (например, у керамики теплопередача выше, чем у ламината).
  5. Расчет температуры поверхности с учетом теплопотерь, теплопередачи, заданной температуры.

В среднем необходимая мощность на каждые 10 м2 площади кладки должна составлять около 1.5 кВт. При этом необходимо учитывать пункт 4 приведенного выше списка. Если дом хорошо утеплен, окна из качественного профиля, то по теплоотдаче можно выделить 20% мощности.

Соответственно при площади комнаты 20 м2 расчет будет происходить по следующей формуле: Q = Q * x * s.

3кВт * 1,2 = 3,6 кВт, где

Q — Требуемая теплопроизводительность,

q = 1,5 кВт = 0,15 кВт — постоянная на каждые 10м2,

х = 1,2 — усредненный коэффициент теплопотерь,

S — площадь комнаты.

Перед тем, как приступить к монтажу системы своими руками, рекомендуется составить схему, точно указать расстояние между стенами и наличие в доме других источников тепла. Это даст возможность максимально точно рассчитать вместимость водяного пола. Если площадь участка не позволяет использовать один контур, то правильно спланируйте систему исходя из установки коллектора. Кроме того, вам нужно будет самостоятельно смонтировать шкаф для устройства и определить его расположение, расстояние до стен и т. Д.

Сколько метров оптимальной длины петли

х3_2.

Часто встречается информация, что максимальная длина одной цепи составляет 120 м. Это не совсем соответствует истине, так как параметр напрямую зависит от диаметра трубы:

  • 16 мм — Max L 90 метров.
  • 17 мм — максимальная длина 100 метров.
  • 20 мм — Макс.длина 120 метров.

Соответственно, чем больше диаметр трубопровода, тем меньше гидравлическое сопротивление и давление.Так что это более длинный контур. Но опытные мастера рекомендуют не «гнаться» за максимальной длиной и выбирать трубу D 16 мм.

Также необходимо учитывать, что толстые трубы D 20 мм проблематично изгибаются, соответственно укладка кладки будет больше рекомендуемого параметра. А это означает низкий уровень эффективности системы, т.к. расстояние между витками будет большим, в любом случае придется делать квадратный контур улитки.

Если для обогрева большого помещения недостаточно одного контура, то лучше монтировать двухдверный пол.Настоятельно рекомендуется делать контуры одинаковой длины, чтобы поверхность поверхности была однородной. Но если разницы в размерах все же не избежать — допускается погрешность в 10 метров. Расстояние между контурами равно рекомендуемому шагу.

Гидравлический шаг между оборотами

Равномерность поверхности зависит от величины поворота поверхности. Обычно используют 2 вида укладки труб: змейка или улитка.

Змейку

желательно делать в помещении с минимальными тепловыми потерями и небольшой площадью.Например, в ванной или коридоре (так как в частном доме или квартире они находятся внутри без контакта с внешней средой). Оптимальный шаг петли для змейки — 15-20 см. При таком типе прокладки потери напора примерно 2500 Па.

Петли-улитки используются в просторных помещениях. Такой способ сохраняет длину контура и дает возможность равномерно утеплить комнату как посередине, так и ближе к наружным стенам. Шаг петли рекомендуется в пределах 15-30 см.Специалисты утверждают, что идеальное расстояние ступеньки составляет 15 см. Потери давления в улитке — 1600 Па. Соответственно, такой вариант укладки более выгоден для установки энергоэффективности системы (можно покрыть меньшую полезную площадь). Вывод: Улитка более эффективна, она понижает давление меньше, соответственно выше КПД.

Общее правило для обеих схем — поближе к стенам стены нужно уменьшить до 10 см. Соответственно, начиная с середины контура петли помещения постепенно заделывают контур петли.Минимальное расстояние укладки до наружной стены 10-15 см.

Еще один важный момент — нельзя укладывать трубы поверх швов бетонных плит. Необходимо составить схему так, чтобы соблюдалось одинаковое расположение петли между стыками плиты с двух сторон. Для установки своими руками можно предварительно нарисовать схему черным галстуком мелом.

Сколько градусов допускается при понижении температуры

Проектирование системы Помимо потерь тепла и давления учитываются температурные различия.Максимальная разница — 10 градусов. Но рекомендуется ориентироваться на 5 ° C для равномерной работы системы. Если заданная комфортная температура поверхности пола составляет 30 ° C, то прямая труба должна подводиться около 35 ° C.

Давление и температура, а также их потери проверяются при опрессовке (проверка системы перед чистовой стяжкой). При правильном проектировании указанные параметры будут точными с погрешностью не более 3-5%. Чем выше перепад Т, тем выше расход пола.

«Полы с подогревом» — обзор

В этом третьем практическом примере рассматривается наша самая экологичная схема на сегодняшний день; выигранный после ограниченного конкурса по приглашению, новый многоцелевой зал в Tower House School должен был выполнять три различных функции под одной крышей — сборка / обед / представление — при этом сочетая в себе музыкальную школу, большую гибкую сцену и кухню для общественного питания. для приготовления школьных обедов.

Треугольный план с тремя отдельными крыльями, окружающими большой крытый зал, включает уникальный наземный источник, пассивную систему вентиляции, которая использует сеть подземных бетонных труб большого диаметра.

Кроме того, высокий уровень теплоизоляции, естественного дневного света и низкоэнергетического освещения обеспечили, чтобы потребление энергии в здании оставалось намного ниже, чем у сопоставимых традиционных типов зданий. Материалы также были тщательно отобраны с учетом их превосходных характеристик жизненного цикла, возможности вторичной переработки и надежности / соответствия назначению.

2.3.1 Многоцелевой зал, Тауэр Хаус Шолль, Шин, Ричмонд, Лондон — Пример 3

Приглашенный конкурсный отчет требовал создания небольшого многоцелевого зала на узком треугольном участке в дальнем углу ограниченного пространства. детская площадка, встроенная в территорию бывшего викторианского особняка в пригороде.

Директора школ выделили два ключевых критерия для получения комиссии: во-первых, чтобы схема была как можно более «зеленой»; во-вторых, это достигается при максимальном бюджете ≤500K.

С самого начала стало ясно, что для того, чтобы предоставить жилье, желаемое школой — новая музыкальная школа, выделенная сцена / пространство для выступлений, актовый и столовый зал с кухонным оборудованием; и все «под одной крышей» — нужно было бы использовать почти весь участок.

Наше решение предлагало треугольный план. Это предлагало наилучший компромисс между различными функциями и соответствовало ограниченной форме сайта — давая нам пространство, чтобы сохранить структуру ниже двух этажей в высоту; Само по себе ключевое ограничение, поскольку участок был ограничен со всех сторон садами трех отдельных жилищ.

Клиенты часто имеют предвзятые представления о том, что означает «зеленое» здание: в здании не используется энергия; что он не требует охлаждения / нагрева, что он изготовлен из полностью перерабатываемых материалов, полученных из чистых, этичных, не загрязняющих окружающую среду источников; и даже то, что это выглядит «эко».

Однако по мере продвижения проекта внешние факторы изменяют, сдвигают и подрывают первоначальные устремления. Стоимость почти всегда одна из них.

Чтобы создать действительно «зеленую» схему и избежать ловушки затрат, мы решили сосредоточиться на одном аспекте конструкции здания — вентиляции. Было важно, чтобы такой подход был «встроен в здание», а не добавлялся в качестве дополнения.

Учитывая ориентацию объекта и возможность большой площади крыши, рассматривалась фотоэлектрическая система, но основное внимание уделялось обеспечению устойчивого, низкоэнергетического подхода к вентиляции, что в конечном итоге сделало наше решение простым, рентабельным, элегантным и доступным.

Ключевым пространством в рамках проекта был многоцелевой зал, способный вместить 100 учеников для утренних собраний, обедов с полным сиденьем и вечерних представлений, а также посещения родителей и гостей.

Необходимость смены режима использования в течение дня означала важность контроля освещения, поэтому была предложена система выдвижных штор в полную высоту, которые можно было легко развернуть, чтобы обеспечить ограждение, шумоподавление и затемнение. Однако использование этих занавесок представляло проблемы с вентиляцией и охлаждением / обогревом зала, особенно с изменяющимися температурными требованиями, предъявляемыми к пространству при многократном использовании.

Зал занял центральное место в плане, оставив три зоны для остальных функций.

В длинном узком «крыле» к югу от холла располагалась музыкальная школа, состоящая из небольших, акустически разделенных, учебных / учебных комнат, магазинов инструментов и большой камерной комнаты.

Западная зона стала сценой, флигелями и зоной «кулисы». Кроме того, это пространство можно использовать как отдельное, большое пространство для преподавания / практики для театрального или школьного оркестра, с двустворчатыми дверьми, отделяющими его от зала.Северная зона была обозначена как официальное «крыло» сцены и большой магазин реквизита и декораций. Наконец, восточная зона, примыкающая к передней части холла, включала кухню, завод, AV / звуковую / контрольную кабину и пространство главного входа.

Высота зала снижалась от двух этажей в западном конце до одного этажа в восточном конце; что делает его идеальным для размещения заводов и диспетчерских в верхней части над кухней и арки авансцены в противоположном нижнем конце.

Работоспособное «многоцелевое» сооружение было создано с использованием низкотехнологичного комплекта, такого как занавески, складывающиеся вручную / раздвижные двери / перегородки [для сцены] и освещенный коридор в потолке, который служил акустической перегородкой. между музыкальной школой и главным залом.

Казалось логичным, что вентиляционное решение, которое, несомненно, является одним из крупнейших потребителей энергии в зданиях такого типа, также должно последовать в этом направлении. Предлагаемое здание, занимающее всю территорию участка и ограниченное двумя из трех его сторон, оставляло мало места для дворов или возможности для создания окон вдоль этих границ.Кроме того, местные органы власти ограничили планирование и краткое изложение любых форм вертикальных дымоходов или дымоходов.

Команда разработчиков обратилась к единственному «пространству», доступному за пределами обозначенного участка: оставшимся игровым площадкам на юге и востоке.

Нам было известно о некоторых недавних схемах, в которых для интеллектуального эффекта использовалась технология охлаждающих балок, но мы осознавали стоимость и ограничения таких вариантов в нашем случае. Однако наземное отопление становилось все более жизнеспособной альтернативой, и мы задавались вопросом, может ли существовать эквивалент для обеспечения вентиляции свежим воздухом, необходимой для объекта, но пассивным способом.

Команда разработчиков была уверена, что другие примеры пассивной вентиляции обеспечат комфорт для клиента при принятии такого подхода в своем новом здании. Задача заключалась в том, чтобы убедить клиента в том, что его конкретный объект и обстоятельства потребуют переделки более традиционных форм пассивной вентиляции, предложив грунтовые трубы. В конечном итоге именно такой низкотехнологичный подход в сочетании с добавленной стоимостью включения системы с самого начала покорил клиента.

Этот принцип, впервые применявшийся в различных формах в «эко-зданиях» еще в шестидесятых годах прошлого века, основан на относительно постоянной, стабильной температуре земли на глубине 1,5 м; 14 ° C, и разница между ними по сравнению с температурой окружающего воздуха на уровне земли [как зимой, когда температура под землей выше, так и летом, когда наоборот].

Эта постоянная подземной температуры в последнее время все чаще используется в современных технологиях наземных тепловых насосов.

Использование такой постоянной температуры под поверхностью потребует подходящего физического трубопровода, и в этом случае команда разработчиков сосредоточилась на герметичных трубах. Учитывая площадь окружающей незастроенной детской площадки, предполагалось, что там будет соответствующее сооружение для закапывания таких герметичных труб. Теория утверждала, что та же самая постоянная температура грунта может быть использована для охлаждения или нагрева свежего приземного воздуха, когда он проходит через подводные трубопроводы на пути к обеспечению вентиляции здания.

Для того, чтобы система была по-настоящему оптимизирована, необходимо создать достаточное давление, и это было предложено путем указания заданного диаметра трубы в сравнении с регулируемым демпфированием жалюзи подачи / подачи, чтобы обеспечить постоянный поток подаваемого воздуха с адекватная вытяжка, позволяющая теплому застывшему воздуху выходить из здания.

Эта последняя часть процесса также предлагала дополнительную возможность рекуперации тепла для рециркуляции в зимние месяцы.

Регулирование подачи воздуха таким образом означало, что можно было легко обеспечить обильную пассивную низкоэнергетическую форму фонового охлаждения / обогрева в сочетании с вентиляцией свежим воздухом, что привело к низкотехнологичной установке, не требующей особого ухода.

Планирование такой системы потребовало скоординированного подхода со стороны проектной группы, тем более, что не существовало коммерчески доступного легкодоступного «комплекта». Как только началось детальное проектирование, команда дизайнеров приступила к разработке решения, которое окажется одновременно практичным и «низкотехнологичным». Система, которая была выбрана, должна была включать серию подземных труб большого диаметра, предназначенных для подачи свежего воздуха в пространство центрального зала.

Ограниченный участок и ограниченное пространство, доступное на прилегающих игровых площадках, означало, что любая подземная система труб должна быть установлена ​​таким образом, чтобы свести к минимуму нарушение нормального функционирования школы, и это включало оставление больших площадей детская площадка оцеплена и недоступна подрядчикам; в результате осталось только два возможных места для траншеи для труб.

Дополнительные ограничения были вызваны предложенным диаметром труб; расчеты инженеров по механическому и электрическому оборудованию (M & E) показали, что ограничение количества и длины участков трубопровода привело к увеличению диаметра подающих труб, что позволило максимально увеличить площадь поверхности для воздействия теплового воздействия окружающей среды, испытываемого под землей.

Окончательное строительное решение предполагало использование больших плотных бетонных дренажных труб [диаметром более 500 мм], размещаемых в траншеях, которые частично проходили бы под опорной плитой здания на глубине не менее 1.5м. В соответствии с низкотехнологичным подходом эти трубы были легко приобретены у общего поставщика строительных материалов. Были идентифицированы два пробега; первая по юго-западной границе участка для питания части зала, примыкающей к коридору музыкальной школы; второй — в дальнем северо-восточном углу площадки, чтобы накормить северную часть зала.

Для каждого прогона требовалась уникальная конструкция воздухозаборника, поскольку оба были разной длины, но требовалось обеспечить одинаковый уровень пассивного теплового охлаждения и нагрева.

Южный водозабор должен был располагаться как можно ближе к ограждающей стене, чтобы игровая площадка оставалась свободной, но не мог выходить за пределы ограждающей конструкции здания дальше, чем протяженность застекленного навеса у входа. В конечном итоге был предложен низкий и широкий люк на уровне земли, тщательно спрятанный под скамейкой для сидения, ведущей снаружи в вестибюль.

Позади решетки использовались регулируемые жалюзи для смягчения поступающего свежего приточного воздуха и обеспечения необходимого ограниченного потока, который считается достаточным для создания достаточного давления на выходе из прохода внутри зала.

Северо-западный водозабор был расположен в углу здания, чтобы свести к минимуму потенциальное столкновение с прилегающей игровой площадкой и площадкой для детей младшего школьного возраста. Существовало достаточно места, чтобы воздухозаборник был более «выразительным» по форме, позволяя воздуховоду предоставлять визуальные ориентиры для школьников, помогая им лучше понять экологичный подход, принятый для вентиляции.

Юго-восточный водозабор был тонким и едва заметным под уступом входной зоны; Напротив, северо-восточное потребление было полностью выражено в форме воронкообразной конструкции, вдохновленной вентиляционными отверстиями, использовавшимися для такого культового успеха в Центре Помпиду в Париже и здании Lloyds в Лондоне [назвать только два].

Как и в случае с юго-восточным вентиляционным отверстием, диаметр дымохода определялся требуемым давлением и расходом приточного воздуха; в результате получается приятная форма, которая может быть четко выражена над окружающей игровой площадкой.

В дополнение к заземляющим трубам требовалось решение для приточных вентиляционных отверстий, чтобы обеспечить приток свежего воздуха в здание. В задании говорилось о многоцелевом зале, в котором можно было бы проводить собрания, обеды и выступления; каждое использование накладывало различную нагрузку на требования к вентиляции.Это было еще более осложнено использованием «низкотехнологичного» подхода к обеспечению необходимой гибкой программы с помощью занавеса и складывающихся в два раза экранов, что ограничивало возможности выбора размеров при размещении вентиляционных отверстий.

Чтобы преодолеть эти сложности, были придуманы две длинные углубления для прохода по всей длине зала. Расположенные как на северной, так и на южной сторонах, они должны быть тщательно согласованы с выдвижными занавесками, чтобы гарантировать, что поток воздуха и циркуляция не будут затруднены.

Расчеты M&E показали, что, несмотря на значительные масштабы подземной установки, в часы пик пассивная подача воздуха потребует некоторого увеличения, чтобы поддерживать уровни комфорта на приемлемом уровне. Для борьбы с этим недостатком была предложена установка кондиционирования воздуха, включающая в себя функции рециркуляции и умеренной рекуперации тепла. Это устройство может также использоваться в качестве источника вентиляции для туалетов музыкальной школы, акустически закрытых репетиционных залов и задней части сцены. В конечном итоге, расположенная в задней части сцены за аркой авансцены, система включала в себя одно длинное горизонтальное воздухозаборное отверстие, расположенное в передней части авансцены над складывающимися перегородками, аудио-видео инсталляцией и сценическими занавесками, а также обеспечивала дополнительный высокий уровень. вытяжка теплого несвежего поднимающегося воздуха, который может происходить в периоды пиковой нагрузки.Обеспечение этой усиленной механической вентиляции также будет действовать как «импульс» для пассивной подачи, ускоряя поток и создавая большее движение воздуха в зале.

Чтобы удовлетворить потребности в отоплении в зимнее время, был сделан вывод, что наиболее рациональным решением для увеличения пассивной теплой вентиляции является установка низкотемпературной фоновой системы теплых полов в основном зале и основных помещениях. Кроме того, посредством закалки пассивного приточного воздуховода радиаторы типа «решетчатая труба» были установлены внутри двух длинных напольных приточных вентиляционных отверстий.

На этапе ввода в эксплуатацию инженеры по мониторингу и оценке должны были оценить, поступает ли желаемый эффект от потока умеренного естественно вентилируемого воздуха в зал через наземные каналы и вентиляционные отверстия, как задумано.

Первоначальное тестирование показало, что система функционирует должным образом, однако клиента это не убедило, и с этой целью персоналу и управляющим было предложено накрыть внутренние вентиляционные отверстия тонким листом бумаги, чтобы увидеть эффект воочию.

После шести месяцев эксплуатации было проведено второе обследование использования здания, и результаты показали следующее:

В школе редко включали полы с подогревом в зимние месяцы, так как температура в холле оставалась комфортно теплой. ; даже в самые холодные дни.

В средний теплый летний день, в часы пик, помимо открытия оконных форточек на верхнем уровне, школе редко приходилось открывать наружные раздвижные двери, выходящие на север, для дополнительной вентиляции.

Возобновляемый и устойчивый дизайн повлиял на ряд других аспектов схемы.

Тщательное внимание было уделено материалам и их пригодности для вторичной переработки, долговечности и пригодности для использования, а также их экологическим характеристикам с точки зрения производства из возобновляемых ресурсов и возможности вторичной переработки в конце срока службы.

Были указаны следующие основные материалы:

Профилированная фальцевая алюминиевая крыша с длительным сроком службы, не требующая технического обслуживания, с отличной пригодностью для повторного использования постов и очень хорошим отражением солнечного излучения.

Композитная древесина / алюминий, термически разбитая, оконные / дверные блоки с двойным остеклением — с отличными показателями U, звуковыми и тяговыми характеристиками — изготовлены из возобновляемой древесины и перерабатываемого алюминия.

Профилированные, полуструктурные, полноразмерные, грузинские армированные стеклянные панели между залом и музыкальной школой с минимальным количеством элементов каркаса и вспомогательных опор; эти панели были прочной системой промышленного класса, которая была прочной и долговечной.

Бетонные блоки с гладкой поверхностью, пропитанные силиконовой смолой — обеспечивают прочную отделку поверхности стандартного бетонного блока и обеспечивают долговечность, долгий срок службы и однослойную отделку, исключающую необходимость во втором нанесении отделки поверхности на экстерьер и интерьер зала.

Пропитанные смолой, слоистые, инженерные деревянные полы для пола — они были установлены во всех основных помещениях здания — с использованием древесины из сертифицированного экологически чистого источника, пропитка смолой обеспечила отличный срок службы и прочную долговечность. отделка обслуживания.

Использование естественного дневного света обеспечило еще одну область экономии энергии. Большая площадь остекления, выходящего на север, обеспечивала хороший уровень рассеянного северного света в главный зал; коридор музыкальной школы был освещен как сверху, обращенными к потолочным панелям, так и боковым освещением через высокие вертикальные профилированные стеклянные панели; наконец, акустически закрытые небольшие помещения для тренировок получили превосходный уровень естественного дневного света благодаря круглым куполообразным потолочным светильникам с круглой арматурой из прозрачного поликарбоната, расположенной так, чтобы «плавать» в центре потолка, сводя к минимуму потерю естественного света.

Широко использовались люминесцентные низкоэнергетические светильники по всему залу, в том числе в входных светильниках из матового дутого стекла, за которыми скрывались стандартные энергосберегающие лампы E27.

Динамическое моделирование и сравнение двух систем теплого пола

Все, что вы всегда хотели знать о своей системе отопления…

В следующем примере моделируются две системы теплого пола с использованием функции динамического моделирования HTflux.На основе моделирования переходных процессов мы выявим различия в динамическом поведении этих двух систем. Точное динамическое поведение всегда зависит от всей системы отопления, конструкции пола и условий окружающей среды. Поэтому два представленных ниже примера отражают только две случайные, но типичные специфические конфигурации.

Две модели

Первая установка представляет собой так называемую конструкцию сухого пола, состоящую из сухой стяжки из гипсокартона (25 мм), нагреваемой специальной интегрированной системой теплого пола, состоящей из алюминиевых тепловых пластин и полиэтиленовых тепловых трубок (14 × 2 мм), встроенные в крепежные панели EPS.Вторая установка отражает общую деталь, где полиэтиленовые трубы непосредственно интегрированы в ангидритную стяжку (70 мм). Под стяжкой находится звукоизоляционная плита EPS (30 мм).

Модель A — сухая стяжка и алюминиевые ребра

Модель B — стандартная стяжка

Кроме того, обе конструкции имеют слой паркета сверху (3 мм) и железобетонную плиту с внешней изоляцией снизу. Расстояние между трубами принято равным 15 см. Благодаря симметричной геометрии достаточно моделировать только один сегмент, принимая адиабатические граничные условия с обеих сторон.

Граничные условия

В соответствии с соответствующим стандартом EN ISO 1264 для поверхности пола установлено поверхностное сопротивление 0,0926 Вт / м²K (см. Таблицу сопротивлений теплопередаче внизу). Внутренняя температура установлена ​​на 20 ° C. На внешней стороне предполагается контакт с почвой (Rse = 0 Вт / м²K, T = 10 ° C). Из-за теплоизоляции плиты перекрытия внешняя сторона модели играет второстепенную роль. Конечно, остаточные тепловые потери и их динамическое поведение также могут быть легко изучены, если это представляет интерес.

Удельная тепловая мощность системы отопления

Рассчитать точную тепловую мощность для системы отопления легко, так как вам нужно будет только запустить стационарное тепловое моделирование. Если вы измеряете тепловой поток к внутренней стороне с помощью измерительного инструмента и разделите его на разницу температур между температурой теплоносителя и внутренней температурой, а также на ширину моделируемого сегмента (расстояние между трубами), вы получите непосредственно получить важный градиент характеристической кривой K H (или эквивалентный коэффициент теплопередачи ).Умножив это значение с дельтой температур, комнатной температурой минус температура теплоносителя, вы можете легко рассчитать удельную тепловую мощность q вашего отопления для любых температур (мощность вашего обогрева на один квадратный метр).

Плотность теплового потока — теплые полы, сухая система с алюминиевыми пластинами

Например. в нашей первой модели с сухой стяжкой и алюминиевыми ребрами эквивалентный коэффициент теплопередачи можно рассчитать как K H = Φ / (ΔT · d) = 5,819 / (10 · 0,15) = 3,88 Вт / м².K , что означает, что на каждый градус, на который теплоноситель теплее комнатной, мы получаем мощность нагрева 3,88 Вт на квадратный метр поверхности системы отопления.
Важное значение K H , характеризующее вашу систему отопления, определяется теплопроводностью слоев между теплоносителем (трубы, стяжка, изоляция и т. Д.) И поверхностью пола, а также фактической геометрией. Поскольку тепловое моделирование, выполняемое с помощью HTflux, точно учитывает все эти факторы, результаты расчетов будут более точными, чем результаты, выполненные с помощью методов, описанных в соответствующем стандарте (EN ISO 1264).Приведенные здесь рекомендации по расчетам основаны на аналитических и полуэмпирических методах, что позволяет проектировщикам систем отопления получать точные оценки без теплового моделирования. Однако, поскольку выполнить такое моделирование с помощью HTflux довольно просто, результаты будут более точными, и вы получите много дополнительной информации, мы думаем, что это является отличной альтернативой.

Динамическое поведение отопительной системы

Поскольку расчет стационарной тепловой мощности с HTflux довольно прост, мы перейдем к следующему уровню и определим динамическое поведение систем отопления, так как это не потребует больших дополнительных усилий.

Чтобы полностью понять и сравнить динамическое поведение систем отопления, мы определяем три различных случая:

Динамический анализ I: поведение при нагреве / запуске

Конечно, характеристики нагревательной системы зависят не только от конструкции теплого пола, но и от нагревательного устройства, длины труб, тепловых масс в помещениях и многих других факторов. Однако тепловая масса вокруг труб отопления обычно играет преобладающую роль.Поэтому лучший способ изучить тепловую инерцию конструкции — это провести так называемый тест на скачкообразную реакцию. В этом тесте мы предполагаем постоянную температуру в помещении и «идеальный обогреватель», который способен мгновенно обеспечивать постоянную температуру теплоносителя. Сначала мы предполагаем, что трубы отопления находятся в режиме «выключено», что означает, что температура воды в трубах будет «плавающей», то есть в зависимости от температуры окружающей среды. Из этого начального состояния мы включим нагрев с так называемой ступенчатой ​​функцией, резко установив температуру теплоносителя на уровне 30 ° C в определенное время.

Измеряя следующую реакцию системы (температуры и тепловой поток), мы можем вычислить важные постоянные времени, которые позволят нам описать поведение всей системы отопления с учетом всех аспектов (например, длины труб, мощности нагревателя … ) позже.

Тепловая мощность в период нагрева — теплоноситель установлен на 30 ° C

Средняя температура пола в период нагрева — теплоноситель установлен на 30 ° C

Как видите, конструкция с сухой стяжкой нагревается значительно быстрее.Для количественного описания теплового массового эффекта мы можем использовать метод полупериода времени, то есть мы можем описать динамическое поведение при запуске системы отопления, указав время, которое требуется, пока система отопления не достигнет половины своей максимальной тепловой мощности. Эта продолжительность составляет 26 минут для системы «сухая стяжка» и 104 минуты для системы «влажная» / стандартная стяжка.

Динамический анализ II: режим охлаждения

Чтобы изучить охлаждающую способность полов с подогревом, мы проведем такой же тест на скачкообразную реакцию, что и раньше.На этот раз начнется с начальной температуры теплоносителя 30 ° C и произойдет резкое отключение принудительного нагрева. Анализируя температуру и тепловой поток на этапе охлаждения, мы снова можем собрать ценную информацию о системе отопления. Эта информация может использоваться для оптимизации управления или проектирования системы отопления.

Тепловая мощность в период охлаждения — теплоноситель установлен на 30 ° C

Средняя температура пола в период охлаждения — теплоноситель установлен на 30 ° C

Как видите, конструкция с «сухой стяжкой» остывает значительно быстрее.Тепловая мощность пола снижается до половины максимального значения в течение 75 минут, тогда как «мокрой стяжке» требуется 293 минуты, чтобы достичь этого уровня.

Динамический анализ III: интервальное поведение

С HTflux вы можете использовать любой временной ряд для динамического определения температуры теплоносителя. Чтобы показать более сложный пример, мы использовали в качестве входных данных ступенчатую функцию: 1 час ВКЛ / 1 час ВЫКЛ. Конечно, результирующее поведение можно вывести аналитически из ранее проведенных тестов при включении и выключении, однако для изучения всего температурного профиля проще запустить моделирование с соответствующим температурным профилем.Было бы интересно проанализировать, как система теплого пола реагирует на такой «интервальный обогрев» в результате либо плохого управления обогревом, либо конкретного источника обогрева, эффективно работающего только на определенном уровне температуры.

Тепловая мощность в режиме интервала включения / выключения 1 час

Средняя температура пола в режиме интервала включения / выключения 1 час

Сравнение систем отопления «сухая стяжка» и «влажная стяжка»

Важно отметить, что невозможно оценить производительность систем отопления только по этим цифрам.Влияние тепловой массы / инерции может быть либо выгодным, либо невыгодным в зависимости от конкретного применения. Например. высокая тепловая масса системы теплых полов часто вызывает ситуации перегрева в переходные сезоны, когда прохладные ночи сменяются быстрым выбросом солнечной энергии через окна. Типичные тепловыделения показаны на рисунке ниже:

Ситуация с весенним перегревом (помещение, ориентированное на юго-восток)

С другой стороны, когда по техническим, экономическим или экологическим причинам источник тепла может обеспечивать электроэнергию только в ограниченные периоды времени, многие системы отопления полагаются на большие тепловые массы.Следовательно, невозможно судить о системе отопления по ее тепловой массе, однако по-прежнему важно хорошо знать динамическое поведение, чтобы иметь возможность выбрать наиболее подходящую систему, а также оптимизировать управление такой системой. .

(c) HTflux, Даниэль Рюдиссер

Примечание. Вам разрешается и поощряется использование изображений с этой страницы или установка ссылки на эту страницу при условии, что авторство указано на «www.htflux.com».

Расчет

— Расчет Heatcom

— Heatcom

Вы что-то упускаете?

Рассчитайте расстояние C-C = расстояние между двумя петлями кабеля.
Рассчитайте расстояние между отдельными кабельными стропами, исходя из размера комнаты и длины нагревательного кабеля.

1) Определите, какую площадь следует покрыть нагревательным кабелем.
Измерьте площадь пола в квадратных метрах. Вычтите 5-10 см вдоль всех стен или пешеходной зоны на 0,9.

2) Определите длину нагревательного кабеля.
Прочтите этикетку на изделии, чтобы определить длину нагревательного кабеля.

3) Рассчитайте расстояние C-C.
C-C расстояние = площадь [м²] / длина кабеля [м]
Или воспользуйтесь автоматическим калькулятором.

Автоматический расчет C-C.
Чтобы рассчитать расстояние C-C, используйте автоматический калькулятор на этой странице.
Введите площадь в квадратных метрах и длину кабеля в метрах и нажмите «Рассчитать».

Общие сведения о потребляемой мощности для теплого пола

Потребляемая мощность пер.квадратный метр зависит от уровня изоляции, площади окон и высоты потолка. Поэтому приведенные ниже рекомендации являются общими.

При установке в хорошо изолированном помещении с нормальной высотой потолка и площадью окна возможны следующие эффекты. Рекомендация касается общей площади пола.
В конструкциях с верхним слоем из дерева, винила и паркета: 80-100 Вт / м²
В конструкциях с верхним слоем из натурального камня или керамической плитки: от 100 до 150 Вт / м²

В конструкциях с менее хорошей изоляцией используется более высокая мощность / м².Рекомендуется разместить дополнительные 50 Вт на каждый. квадратные метры.
Примечание. 200 Вт / м² — максимальная мощность.

Вы заинтересованы в сотрудничестве?

Мы также постоянно стремимся к развитию серьезных и долгосрочных отношений сотрудничества с нашими партнерами и поставщиками. Поэтому Heatcom в первую очередь сотрудничает с людьми.

Heatcom Corporation A / S — датская компания с многолетним опытом проектирования, производства и продажи электрических полов с подогревом, термостатов и средств защиты от замерзания.

Heatcom Corporation A / S © 2020

CVR: 26755166

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *