Разное

Объем воды в системе отопления расчет от мощности: Как рассчитать объем воды в системе отопления, радиаторах, трубах.

Содержание

Как рассчитать объем воды в системе отопления, радиаторах, трубах.

Последнее обновление:

Расчет объема воды (теплоносителя), заполняющего систему отопления, будет одним из первых при выборе котла.

Это необходимо для понимания какой оптимальный объем может прогреть ваш котел или другой источник тепла. Параметры труб очень сильно влияют на данный показатель: при наличии насоса вы смело можете выбрать трубу меньшего диаметра и установить больше секций отопления.

Если выбрать трубы большого диаметра, то при максимальной мощности котла можно получить недогрев теплоносителя: большой объем воды будет раньше остывать, прежде чем дойдет до крайних точек системы отопления. Что в свою очередь приведет к дополнительным финансовым расходам.

Приблизительный расчет объема воды в системе отопления производится из соотношения 15 л воды на 1 кВт мощности котла.

Чтобы определить какой объем воды нужен для системы отопления дома, рассмотрим простой пример. 

Мощность котла 4 кВт, тогда объем системы равен 4 кВт*15 литров = 60 литров. Но необходимо учитывать размеры и количество секций радиаторов при этом.

Если у вас дом на 4 комнаты, то это не значит, что надо ставить по 12-15 секций в каждую: у вас будет очень жарко, котел будет работать неэффективно. Если комнат больше, то и экономить на радиаторах не стоит: 1 современная секция эффективно отдает тепло для 2…2,5 м2 площади.

Как просто определить какой мощности нужен котел для системы отопления дома?

Формулы для расчета объема жидкости (воды или другого теплоносителя) в системе отопления

Объем воды в системе отопления можно рассчитать как сумма составляющих:

V =V(радиаторов)+V(труб)+V(котла)

Объем системы должен учитывать объем воды в трубах, котле и радиаторах. В расчет объема теплоносителя не входит объем расширительного бака. Объем бачка учитывается при расчете критических состояний работы системы (когда вода будет поступать в него при нагреве).

Формула для расчета объема жидкости в трубе:

V (объем) = S (площадь сечения трубы) * L (длина трубы)

Важно! Размеры могут отличаться у различных производителей, в зависимости от типа трубы, материала, ее технологии производства. Поэтому расчет удобнее вести по реальному внутреннему диаметру трубы, который проще промерить с помощью инструмента. Как правило, такой расчет необходимо выполнять больше специалисту, когда система отопления разветвленная и сильно протяженная.

Сравнение видов водяного отопления дома (с естественной и принудительной циркуляцией).

Объемы воды для различных элементов системы отопления

Объем воды (литры) в секции радиатора

Материал/тип радиатораГабариты*: высота×ширина, ммОбъем, л
Алюминий600×800,450
Биметалл600×800,250
Современная чугунная батарея (плоский)580×751,000
Чугунная батарея старого образца ()600×1101,700

*ВАЖНО! Габариты в таблице даны ориентировочно.

В большинстве моделей современных производителей они составляют ±20 мм по ширине, высота радиаторов отопления может варьироваться от 200 до 1000 мм.

Объем сильно отличающихся по высоте радиаторов можно приблизительно рассчитать из данной таблицы по правилу пропорции: необходимо объем разделить на высоту и умножить после на высоту выбранной модели. Если система отопления протяженная, то лучше уточнить параметры объема у производителя.

Объем воды в 1 погонном метре трубы

  • ø15 (G ½») — 0,177 литра
  • ø20 (G ¾») — 0,310 литра
  • ø25 (G 1,0″) — 0,490 литра
  • ø32 (G 1¼») — 0,800 литра
  • ø40 (G 1½») — 1,250 литра
  • ø50 (G 2,0″) — 1,960 литра

Также читайте обзор какие трубы лучше всего выбрать.

Основные размеры внутренних диаметров труб (взят ряд значений от 14 до 54 мм), с которыми может столкнуться потребитель.

Внутренний диаметр, ммОбъем жидкости в 1 м погонного трубы, лВнутренний диаметр, ммОбъем жидкости в 1 м погонного трубы, л
140,1539300,7069
150,1767320,8042
160,2011340,9079
170,2270361,0179
180,2545381,1341
190,2835401,2566
200,3142421,3854
210,3464441,5205
220,3801461,6619
230,4155481,8096
240,4524501,9635
260,5309522,1237
280,6158542,2902

Расчет расширительного бака

Основные правила:

  1. Объем расширительного бака должен быть не менее 10% от объема системы отопления. Данного объема будет достаточно для расширения теплоносителя при нагреве в пределах 45…80 °С.
  2. Для больших протяженных систем, с высокой температурой теплоносителя, запас по объему должен быть не менее 80% от объема системы отопления. Это актуально для котлов с максимальной температурой теплоносителя выше 80…90 °С, паровых систем отопления от печей.
  3. Объем расширительного бака с предохранительным клапаном может составлять 3-5% от объема системы отопления. Но при этом важно контролировать его работу: при срабатывании клапана необходимо пополнять систему водой.
  4. При расчете необходимо учитывать давление в системе. В большинстве случаев для одно и двухэтажных коттеджей оно составляет 1,5…2 атмосферы. Масса готовых баков рассчитаны на данные показатели с запасом. При проектировании системы отопления большого объема, с повышенными характеристиками давления в коммуникациях (для высотных зданий), необходимо учитывать данный параметр.
  5. Учитывать вид теплоносителя при выборе – обязательно. Чем легче жидкость в системе – тем больший расширительный бак ей требуется.

Сравнение: Какой котел выбрать для отопления дома? Достоинства и недостатки.

Виды теплоносителей

  1. Вода. Самый простой и доступный ресурс. Может использоваться в любых системах отопления. В сочетании с полипропиленовыми трубами – практически вечный теплоноситель.
  2. Антифриз. Используется для наполнения систем нерегулярно отапливаемых зданий.
  3. Спиртосодержащие жидкости. Дорогой вариант заполнения системы отопления. Качественные препараты содержат не менее 60% спирта, порядка 30% воды, часть объема занимают другие добавки. Смеси воды с этиловым спиртом с различным процентным содержанием. Незамерзающая жидкость (до -30°С при содержании спирта не менее 45%), но опасна: может гореть, сам этил является ядом для человека.
  4. Масло. Как теплоноситель сегодня используется в отдельных приборах отопления, но в системах отопления от него отказываются: дорого и тяжело эксплуатировать систему, опасно технологически (необходим долгий разогрев теплоносителя до температуры 120°С и выше). Преимущество – действительно долго остывает, поддерживая температуру в помещении, но основной недостаток – дороговизна теплоносителя.

Объем воды в системе отопления. Зависимость от мощности котла

Как подобрать мощность котла под  количество воды (объем) в системе отопления, или наоборот? Существует ли зависимость мощности от литров?
Такие вопросы часто волнуют владельцев отопительных систем…
Действительно, какая должна быть мощность котла, для системы с внутренним объемом 100 литров, например?

Нет ли в этом вопросе какого либо подвоха, направленного лишь на то, что бы мы приобретали лишнее оборудование, которое нам ни к чему?

Рассмотрим, как связаны мощность котла и емкость системы отопления, а также более важный вопрос о подборе насоса для определенной мощности котла…

 

Откуда берется вопрос о зависимости мощности от объема

Как продать лишний радиатор? Установив его в систему, потребитель ничего особого не приобретет и ничего не потеряет, кроме денег. Но дополнительная ощутимая прибыль продавцу будет.

Возникает удобный для наращивания продаж, но не имеющий технического смысла, вопрос о подгонке объема системы отопления под мощность котла. Например, если имеется 20 кВт-ный котел, то нужно докупить еще парочку радиаторов, чтобы объем системы достиг 100 (200, 300) литров, иначе котел не сможет работать на полную мощность… Клиенту ничего не остается, как достать кошелек и начинать отсчитывать дополнительно зеленые (желтые, синие…).

Сколько воды нужно под мощность котла

Вопрос об объеме воды внутри системы отопления имеет большую популярность, так как подогревается строй-бригадами и продавцами. Увеличивать количество оборудования по любой причине – любимое занятие монтажников.

Но технически выбор мощности котла никак не зависит от объема воды в системе отопления, поэтому вопрос о подборках объемов под мощность, или наоборот – выбор котла под литры воды, — не имеет практического смысла.

Котел отдаст всю свою мощность и на 100 литров воды и на 1000 литров. Разница будет лишь во времени нагревания и остывания. Маленькая система нагреется за 10 минут и будет остывать 10 минут, затем снова автоматика включит котел… Большая же будет греться 100 минут и затем остывать долго….

Системы класса low water – в чем преимущества

В последнее время существует тенденция по уменьшению внутреннего объема систем отопления, чтобы уменьшить их тепловую инерционность, для более быстрого нагрева и остывания.

Меньшее количеством воды более гибко и быстро реагируют на изменения температуры внутри здания. Малоемкостную систему котел быстрее разогреет, и она начнет быстрее отдавать тепло, когда это потребуется. После нагрева помещения, лишнего тепла в радиаторах окажется меньше, система быстрее остынет. В этом кроется небольшая экономия.

 

Какие радиаторы подобрать

Современные радиаторы и конвекторы имеют в разы меньший внутренний объем и теплоемкость, по сравнению со старыми чугунными. Уменьшение теплоемкости дает возможность немного экономить энергии, и делать отопление более гибким и комфортным.  Оно оперативней реагирует на изменения температуры, и не накапливает лишней энергии.

Но это больше теоретические выкладки. На практике же ощутимой разницы пользователи не замечают, они могут приобретать любые радиаторы, какие понравятся, какие имеются в магазинах, с полной уверенностью, что система будет работать нормально.

Что важно для мощности котла

Энергия, генерируемая котлом, должна отводиться от него и рассеиваться, — передаваться воздуху и предметам. Иначе котел закипит, расплавится, сгорит…

Через котел должен проходить определенный объем теплоносителя.
Именно количество воды в единицу времени, т. е. ее расход, важно подобрать под определенную мощность котла.

  • Не вдаваясь в расчеты, можно сказать, что через теплообменник 20 кВт должно проходить не менее 1000 литров воды в час. Насос должен это обеспечить.
  • Мощность радиаторов в доме должна быть чуть больше мощности котла, чтобы ее рассеивать, в противном случае система перегреется, закипит.

 

Подбор  насоса под мощность котла

Важно подобрать насос под мощность котла правильно. Насос должен преодолевать гидравлическое сопротивление системы так, чтобы объем проходящей по котлу воды был бы не менее требуемого, т.е. для 10 кВт-ного котла должно быть не менее 500 литров в час (0,5 м куб./ч.)

  • Производительность насоса 25-40 на 3-ей скорости составляет при напоре 3 метра не менее 0,75 м куб в час, что для большинства систем позволяет применять его с котлом до 15 кВт, при площадях до 150 м кв, а в коротких системах и с котлом 20 кВт.
  • Производительность насоса 25-60 при напоре 3м составляет уже 2,5 м куб в час, что дает возможность использовать его для котлов до 40 кВт и площадей отопления до 300 м кв…

Расчет объема воды в системе отопления с онлайн калькулятором

Каждая отопительная система обладает рядом значимых характеристик – номинальную тепловую мощность, расход топлива и объем теплоносителя. Расчет объема воды в системе отопления требует комплексного и скрупулезного подхода. Так, вы сможете выяснить, котел, какой мощности выбрать, определить объем расширительного бака и необходимое количество жидкости для заполнения системы.

Значительная часть жидкости располагается в трубопроводах, которые в схеме теплоснабжения занимают самую большую часть. Поэтому для расчета объема воды нужно знать характеристики труб, и важнейший из них – это диаметр, который определяет вместимость жидкости в магистрали. Если неправильно сделать расчеты, то система будет работать не эффективно, помещение не будет прогреваться на должном уровне. Сделать корректный расчет объемов для системы отопления поможет онлайн калькулятор.

Калькулятор объема жидкости в отопительной системе

В системе отопления могут использоваться трубы различных диаметров, особенно в коллекторных схемах. Поэтому объем жидкости вычисляют по следующей формуле:

S (площадь сечения трубы) * L (длина трубы) = V (объем)

Рассчитывается объем воды в системе отопления можно также как сумма ее составляющих:

V (система отопления)=V(радиаторов)+V(труб)+V(котла)+V(расширительного бака)

В сумме эти данные позволяют рассчитать большую часть объема системы отопления. Однако кроме труб в системе теплоснабжения есть и другие компоненты. Чтобы произвести расчет объема отопительной системы, включая все важные компоненты теплоснабжения, воспользуйтесь нашим онлайн калькулятором объема системы отопления.

Сделать вычисление с помощью калькулятора очень просто. Нужно ввести в таблицу некоторые параметры, касающиеся типа радиаторов, диаметра и длины труб, объема воды в коллекторе и т.д. Затем нужно нажать на кнопку «Рассчитать» и программа выдаст вам точный объем вашей системы отопления.

Выберите вид радиаторов

По умолчаниюАлюминиевые секционныеСтальные панельные

Проверить калькулятор можно, используя указанные выше формулы.

Пример расчета объема воды в системе отопления:

Приблизительный расчет делается исходя из соотношения 15 литр воды на 1 кВт мощности котла.
Например, мощность котла 4 кВт, тогда объем системы равен 4 кВт*15 литров = 60 литров.

Значения объемов различных составляющих

Объем воды в радиаторе:

  • алюминиевый радиатор — 1 секция — 0,450 литра
  • биметаллический радиатор — 1 секция — 0,250 литра
  • новая чугунная батарея 1 секция — 1,000 литр
  • старая чугунная батарея 1 секция — 1,700 литра.

Объем воды в 1 погонном метре трубы:

  • ø15 (G ½») — 0,177 литра
  • ø20 (G ¾») — 0,310 литра
  • ø25 (G 1,0″) — 0,490 литра
  • ø32 (G 1¼») — 0,800 литра
  • ø15 (G 1½») — 1,250 литра
  • ø15 (G 2,0″) — 1,960 литра.

Чтобы посчитать весь объем жидкости в отопительной системе нужно еще добавить объем теплоносителя в котле. Эти данные указываются в сопроводительном паспорте устройства или же взять примерные параметры:

  • напольный котел — 40 литров воды;
  • настенный котел — 3 литра воды.

Выбор котла напрямую зависит от объема жидкости в системе теплоснабжения помещения.

Основные виды теплоносителей

Существует четыре основных вида жидкости, используемых для заполнения отопительных систем:

  1. Вода – максимально простой и доступный теплоноситель, который может использоваться в любых отопительных системах. Вместе с полипропиленовыми трубами, которые предотвращают испарение, вода становится практически вечным теплоносителем.
  2. Антифриз – этот теплоноситель обойдется уже дороже воды, и используется в системах нерегулярно отапливаемых помещений.
  3. Спиртосодержащие теплоносители – это дорогостоящий вариант заполнения отопительной системы. Качественная спиртосодержащая жидкость содержит от 60% спирта, около 30% воды и порядка 10% объема составляют другие добавки. Такие смеси обладают отличными незамерзающими свойствами, но огнеопасны.
  4. Масло – в качестве теплоносителя используется только в специальных котлах, но в отопительных системах практически не применяется, так как эксплуатация такой системы обходится очень дорого. Также масло очень долго разогревается (необходим разогрев, как минимум, до 120°С), что технологически очень опасно, при этом и остывает такая жидкость очень долго, поддерживая высокую температуру в помещении.

В заключении стоит сказать, что если система отопления модернизируется, монтируются трубы или батареи, то нужно произвести перерасчет ее общего объема, согласно новым характеристика всех элементов системы.

Рассчитать объём воды в системе отопления Калининград

Какая информация подлежит сбору:

Сбору подлежат только сведения, обеспечивающие возможность поддержки обратной связи с пользователем.

Некоторые действия пользователей автоматически сохраняются в журналах сервера:

— IP-адрес;
— данные о типе браузера, надстройках, времени запроса и т. д.
 

Как используется полученная информация

Сведения, предоставленные пользователем, используются для связи с ним, в том числе для направления уведомлений об изменении статуса заявки.
 

Управление личными данными

Личные данные доступны для просмотра, изменения и удаления в личном кабинете пользователя.

В целях предотвращения случайного удаления или повреждения данных информация хранится в резервных копиях в течение 7 дней и может быть восстановлена по запросу пользователя.
 

Предоставление данных третьим лицам

Личные данные пользователей могут быть переданы лицам, не связанным с настоящим сайтом, если это необходимо:

— для соблюдения закона,
— нормативно-правового акта,
— исполнения решения суда;
— для выявления или воспрепятствования мошенничеству;
— для устранения технических неисправностей в работе сайта;
— для предоставления информации на основании запроса уполномоченных государственных органов.
 

В случае продажи настоящего сайта пользователи должны быть уведомлены об этом не позднее, чем за 10 дней до совершения сделки.
 

Безопасность данных

Администрация сайта принимает все меры для защиты данных пользователей от несанкционированного доступа, в частности:

— регулярное обновление служб и систем управления сайтом и его содержимым;
— шифровка архивных копий ресурса;
— регулярные проверки на предмет наличия вредоносных кодов;
— использование для размещения сайта виртуального выделенного сервера.
 

Изменения

Обновления политики конфиденциальности публикуются на данной странице. Для удобства пользователей все версии политики конфиденциальности подлежат сохранению в архивных файлах.

 

Каким образом идет расчет объема воды в системе отопления дома

Тот, кому приходилось заниматься в своем доме монтажом или реконструкцией отопления, неизбежно искал ответ на вопрос: как вести расчет количества рабочей жидкости для того, чтобы отопление действовало эффективно?

Столкнувшись с такой проблемой, каждый, прежде всего, должен понять следующее: общий показатель находится в зависимости от общего объема всех элементов, входящих в отопительную систему дома.

Любая из них к тому же работает в условиях, когда то и дело изменяются такие показатели теплоносителя, как давление и нагрев.

Какие факторы влияют на расчеты

Когда выбираешь котел, также неизбежно занимаешься определением объема теплоносителя, которому предстоит заполнить отопительную систему. Без этого никак не обойтись. Ведь есть необходимость понять, какого объема хватит для того, чтобы оптимальным образом прогреть котел.

Отметим, что и характеристики труб очень важны. Они сказываются на общем показателе. Если есть помпа, то без всяких сомнений можно подобрать трубу, у которой маленький диаметр, и произвести установку секций отопления. Желательно, чтобы их было, как можно больше.

ВАЖНО! Тот, кто выбирает трубы повышенного диаметра, должен учитывать, что при даже максимальной работе котла в этом случае теплоноситель может быть нагрет недостаточно. Значительный объем воды просто остывает перед тем, как добраться до отдаленных точек системы. Понятно, что в данной ситуации понадобятся дополнительные денежные затраты.

Суммарный объем определяется так, чтобы для удовлетворительного нагрева имеющихся комнат было достаточно выбранной мощности котла. Когда показатели допустимой мощности котла превышены, то прибор сильно изнашивается. Ко всему увеличивается потребление электричества.

Если нужен приблизительный расчет объема теплоносителя в системе, то можно учесть такое соотношение: на каждый 1 кВт мощности котла — 15 литров воды. В виде учебного примера давайте определим, сколько носителя необходимо системы, если мощность котла составляет 4 кВт. Ответ: 60 литров! Однако при этом необходимо учитывать следующее: каково количество секций радиаторов, каковы их размеры и использованные материалы.

Представим, что в доме четыре комнаты. Сколько секций нужно поставить? Больше 10-ти секций для каждой комнаты? Это слишком много! В комнате будет жарко, а котел заработает неэффективно. Исходите из того, что одна секция современного радиатора способна эффективно передавать тепло для площади в 2-2,5 кв. метра.

ВАЖНО! Характеристики для теплоснабжения всегда вычисляют перед тем, как приступают к монтажным операциям. Они важны, когда подбираешь комплектующие.

Итак, объем теплоносителя в отопительной системе в целом определяют в качестве суммирования некоторых составляющих:
V = V (радиаторов) + V (труб) + V (котла), где V – это объем.

Иными словами, общий объем определяется с учетом объема носителя в котле, трубах и радиаторах. В расчет не включают параметры расширительного бака. Его необходимо учитывать, только когда рассчитываешь потенциальные критические состояния работы системы.

Есть отдельная формула, по которой рассчитывают объем носителя непосредственно в трубе:
V (объем) = S (площадь сечения трубы) х L (длина трубы)

ВАЖНО! Обращаем внимание, что характеристики у различных производителей отличаются. Это зависит от таких факторов, как тип трубы, технология ее выполнения и материал, из которого она изготовлена. Вот почему специалисты рекомендуют выполнять расчеты по реальному внутреннему диаметру трубы.

В большинстве случаев расчеты ведут специалисты. Тому есть простое объяснение. Обычно протяженность отопительной системы слишком велика. Она также сильно разветвленная.

Расчет объемов для различных типов радиаторов


Современных типов радиаторов, предназначенных для систем отопления, сегодня много. Есть из чего выбирать. Они отличаются по своим функциям. Но не только. У них бывает разная высота. Для определения объема рабочей жидкости в радиаторах первым делом нужно подсчитать, сколько их. Затем умножаем полученное количество на характеристики одной секции.

Для определения показателей одного радиатора необходимо воспользоваться данными, которые всегда указываются в техническом паспорте изделия. Если его нет под рукой по каким-либо причинам, то можно использовать усредненные параметры.

Далее предлагаем вам примерные параметры по объему носителя (в литрах) в одной секции радиатора в соответствии с его материалом и типом, а также его примерные габариты в мм (высота/ширина):
— биметаллические (600х80) – 0,25 л
— алюминиевые (600х80) – 0,45 л
— чугунные старого образца (600х110) – 1,7 л
— современные чугунные (плоские, 580х75) – 1 л

Львиная доля моделей всех производителей имеет ±20 мм колебания по ширине. Что касается высоты отопительных радиаторов, то она варьируется от 200 до 1000 мм.

Теперь маленький учебный пример, чтобы оценить, как верно рассчитывают значение. Например, есть пять алюминиевых батарей. В каждой – по 6 секций. Расчет таков: 5 х 6 х 0,45 = 13,5 литра.

ВАЖНО! Чтобы правильно рассчитать объем отопительной системы, у которой дизайнерские радиаторы нестандартной формы, использовать методику, о которой мы только что рассказали, нельзя. В данном случае нужно обратиться к производителю или его официальному дилеру. Только они могут указать объем.

Объем теплоносителя в трубопроводе


Львиная доля всей жидкости находится в трубах. В схеме теплоснабжения именно они занимают значительную долю. Какой объем теплоносителя необходим в такой системе? Какие характеристики труб необходимо учитывать?

Диаметр магистрали нужно считать важнейшим критерием. С его помощью можно установить, какова вместимость воды в трубах. Скажем, если диаметр трубы 20 мм, то вместимость будет составлять 0,137 литра на метр погонный. Если диаметр 50 мм, то вместимость будет составлять 0,865 литра на метр погонный.

В отопительной системе допускается применение труб самых разных диаметров. Особенно это характерно для коллекторных схем. Вот почему объем жидкости в отопительной системе определяют отдельно для каждого участка. А потом все необходимо будет суммировать.

ВАЖНО! Если у вас труба из пластика, то диаметр в ней определяют по размерам внешних стенок. Если из металла, то диаметр в ней определяют по размерам внутренних стенок. Для тепловых систем, у которых большая протяженность, это бывает существенно.

Как рассчитать объем расширительного бака?


Чтобы система работала без рисков, необходима установка специализированного оборудования. Она состоит из воздухоотводчика и спускного клапана. А еще необходим расширительный бак, который служит для того, чтобы компенсировать тепловое расширение горячей воды и снижать критическое давление до характеристик, предусмотренных по норме.

Основные правила:
— На объем бака должно приходиться от 10 процентов объема системы отопления. Этого вполне хватит, чтобы при нагреве расширить теплоноситель в пределах 45-80°С.

— Если мы говорим о протяженных системах, да еще когда температура теплоносителя существенная, то запас должен составлять не менее 80 процентов от объема всей отопительной системы. Это очень важно для тех котлов, у которых максимальная температура теплоносителя превышает 80-90°С. Это актуально и для паровых отопительных систем от печей.

— 3-5% от объема отопительной системы. Именно таким может быть объем расширительного бака с предохранительным клапаном. Очень важно осуществлять контроль над его работой. Как только срабатывает клапан, систему сразу же пополняют жидкостью.

ВАЖНО! Всегда нужно учитывать давление в системе, когда ведешь расчеты. Как правило, для коттеджей в один или два этажа оно достигает 1,5-2 атмосферы. Учтите, что большинство готовых баков рассчитано именно на указанные показатели. Да еще с запасом.

Но если проектируешь отопительную систему, у которой повышенные объем и характеристики давления (например, для многоэтажных домов), то такой параметр обязательно нужно учитывать. Как обязательно учитывать и вид теплоносителя, когда выбираешь бак. Правило простое: чем легче жидкость в системе – тем крупнее расширительный бак для нее нужен.

О видах теплоносителей


Чаще всего рабочей жидкостью служит вода. Однако без альтернативы в таком деле не обходится. Весьма эффективен и антифриз. Он хорош тем, что не замерзает и тогда, когда температура окружающей среды понижается до той отметки, которая для воды становится критической. То есть по сравнению с водой антифриз выглядит предпочтительнее.

Этим и можно объяснить тот факт, что цена на него очень высока. Она не каждому по карману. И потому такую жидкость применяют преимущественно для того, чтобы обогревать строения, у которых площади невелики.

ВОДА, конечно, является доступным ресурсом. Она подойдет для применения в любых отопительных системах. Она практически может стать вечным теплоносителем, если мы говорим о том, что она сочетается с трубами из полипропилена.

Перед тем, как заполнять системы водой, необходимо предварительно подготовить ее. Жидкость необходимо отфильтровать. Это делают, чтобы избавиться от содержащихся в ней минеральных солей. Обычно в таких случаях применяют специализированные химические реагенты. Их можно без проблем купить в магазине. Также из воды в системе обязательно удаляют весь воздух. Если этого не сделать, то снизится эффективность обогрева помещений.

АНТИФРИЗ применяют для того, чтобы наполнять системы зданий, которые отапливаются нерегулярно.

ЖИДКОСТИ, СОДЕРЖАЩИЕ СПИРТ, чтобы заполнять отопительные системы, может позволить себе не каждый. Они дорогие. Что касается качества препаратов, то в них обычно содержится, как минимум, 60 процентов спирта и примерно 30 процентов воды. На иные добавки приходится незначительная доля объема. Смеси воды с этиловым спиртом могут иметь различное процентное содержание.

ВАЖНО! Незамерзающий теплоноситель (при температуре до -30°С) при доле спирта не менее 45 процентов опасна. Он способна воспламениться. Ко всему этил – это яд, который несет явную угрозу человеку.

МАСЛО в качестве теплоносителя в настоящее время применяют лишь в некоторых приборах отопления. Однако в отопительных системах его не применяют. Покупка его обходится дорого. Это основной недостаток масла.

К тому же с маслом тяжело эксплуатировать систему. Оно опасно технологически и долго разогревается до температуры 120°С и выше. А достоинство масла в том, что оно остывает не сразу. Этот процесс длится долго. В результате можно длительный период поддерживать температуру в помещении.

Подведем итоги

Рассчитать, какая емкость рабочей жидкости необходима в системе, да еще без малейших погрешностей, сможет не каждый. Вот почему некоторые, когда не хотят производить подсчеты, делают так. Поначалу они заполняют отопительную систему на 90 процентов. Потом проверяют, как она работает. А затем стравливают воздух, который скопился, и продолжают заполнять систему.

Когда отопительная система эксплуатируется, то уровень теплоносителя снижается, поскольку идут конвекционные процессы. Во время этого процесса котел теряет производительность. Вот почему в резерве должна находиться еще одна емкость, содержащая рабочую жидкость. Так можно будет отследить убыль теплоносителя. Если появится необходимость его пополнить, то это можно будет сделать легко.

Расчет объёмов для отопления: воды, баков, теплоносителя

На чтение 8 мин. Просмотров 80 Опубликовано Обновлено

Любая отопительная система имеет ряд важных характеристик – номинальную тепловую мощность, расход топлива и объем компонентов. Вычисление последнего показателя требует внимательного и комплексного подхода. Как сделать корректный расчет объёмов для отопления: воды, баков, теплоносителя и других компонентов системы?

Необходимсоть вычисления отопления

Пример сложной системы отопления дома

Сначала следует определиться с актуальностью расчета объема воды в системе отопления или этого же показателя для батарей и расширительного бака. Ведь можно установить эти компоненты без сложных операций, руководствуясь только личным опытом и советами профессионалов.

Работа любой системы отопления сопряжена с постоянным изменением показателей теплоносителя – температуры и давления в трубах. Поэтому расчет отопления по объему здания позволит правильно укомплектовать теплоснабжение, исходя из характеристик дома. Кроме этого следует учитывать прямую зависимость эффективности работы от текущих паромеров. Так как рассчитать объем воды в системе отопления можно самостоятельно – эту процедуру рекомендуется выполнять во избежание появления следующих ситуаций:

  • Неправильный фактический тепловой режим работы, который не соответствует расчетному;
  • Неравномерное распределение тепла по отопительным приборам;
  • Возникновение аварийных ситуаций. Ведь как рассчитать объем расширительного бака для отопления, если не будет известен общая вместимость трубопроводов и батарей.

Для минимизации появления этих ситуаций следует своевременно рассчитать объем системы отопления и ее компонентов.

Вычисления параметров теплоснабжения выполняются еще перед монтажными работами. Они служат основой для подбора комплектующих.

Расчет объема теплоносителя в трубах и котле

Компоненты отопительной системы

Отправной точкой для вычисления технических характеристик компонентов является расчет объем воды в системе отопления. Фактически она является суммой вместимости всех элементов, начиная от теплообменника котла и заканчивая батареями.

Как рассчитать объем системы отопления самостоятельно, без привлечения специалистов или использования специальных программ? Для этого понадобиться схема расположения компонентов и их габаритные характеристики. Общая вместимость системы будет определяться именно этими параметрами.

Объём воды в трубопроводе

Значительная часть воды располагается в трубопроводах. Они занимают большую часть в схеме теплоснабжения. Как рассчитать объем теплоносителя в системе отопления, и какие характеристики труб нужно знать для этого? Важнейшей из них является диаметр магистрали. Именно он определит вместимость воды в трубах. Для вычисления достаточно взять данные из таблицы.

Диаметр трубы, ммВместимость л/п.м.
200,137
250,216
320,353
400,555
500,865

В отопительной системе могут быть использованы трубы различных диаметров. В особенности это касается коллекторных схем. Поэтому объем воды в системе отопления вычисляется по следующей формуле:

Vобщ=Vтр1*Lтр1+ Vтр2*Lтр2+ Vтр2*Lтр2…

Где Vобщ – общая вместимость воды в трубопроводах, л, Vтр – объем теплоносителя в 1 м.п. трубы определенного диаметра, Lтр — общая протяженность магистрали с заданным сечением.

В сумме эти данные позволят рассчитать большую часть объема системы отопления. Но помимо труб есть и другие компоненты теплоснабжения.

У пластиковых труб диаметр вычисляется по размерам внешних стенок, а у металлических — по внутренним. Это может существенно для тепловых систем с большой протяженностью.

Расчет объема котла отопления

Теплообменник котла отопления

Корректный объем котла отопления можно узнать только из данных технического паспорта. Каждая модель этого отопительного прибора имеет свои уникальные характеристики, которые зачастую не повторяются.

Напольный котел может иметь большие габариты. В особенности это касается твердотопливных моделей. По факту теплоноситель занимает не весь объем котла отопления, а лишь небольшую его часть. Вся жидкость располагается в теплообменнике – конструкции, необходимой для передачи тепловой энергии от зоны сгорания топлива воде.

Если инструкция от отопительного оборудования была утеряна — для просчетов может быть взята ориентировочная вместимость теплообменника. Она зависит от мощности и модели котла:

  • Напольные модели могут вмещать от 10 до 25 литров воды. В среднем твердотопливный котел мощностью 24 кВт содержит в теплообменнике около 20 л. теплоносителя;
  • Настенные газовые менее вместительны – от 3 до 7 л.

Учитывая параметры для расчета объема теплоносителя в системе отопления вместимостью теплообменника котла можно пренебречь. Этот показатель варьируется от 1% до 3% от общего объема теплоснабжения частного дома.

Без периодической очистки отопления уменьшается сечение труб и проходной диаметр батарей. Это сказывается на фактической вместимости отопительной системы.

Расчет объёма расширительного бака отопления

Конструкция расширительного бака

Для безопасной работы отопительной системы необходима установка специального оборудования – воздухоотводчика, спускного клапана и расширительного бака. Последний предназначен для компенсации теплового расширения горячей воды и уменьшения критического давления до нормальных показателей.

Бак закрытого типа

Фактический объем расширительного бака для системы отопления — величина не постоянная. Это объясняется его конструкцией. Для закрытых схем теплоснабжения устанавливают мембранные модели, разделенные на две камеры. Одна из них заполнена воздухом с определенным показателем давления. Он должен быть меньше критического для отопительной системы на 10% -15%. Вторая часть заполняется водой из патрубка, подключенного к магистрали.

Для расчета объема расширительного бака в отопительной системе нужно узнать коэффициент его заполнения (Кзап). Эту величину можно взять из данных таблицы:

Таблица коэффициента заполнения расширительного бака

Помимо этого показателя потребуется определить дополнительные:

  • Нормированный коэффициент теплового расширения воды при температуре +85°С, Е – 0,034;
  • Общий объем воды в отопительной системе, С;
  • Начальное (Рмин) и максимальное (Рмакс) давление в трубах.

Дальнейшие вычисления объема расширительного бака для системы отопления выполняются по формуле:

Если в теплоснабжении используется антифриз или другая незамерзающая жидкость – значение коэффициента расширения будет больше на 10-15%. Согласно этой методике можно с большой точность рассчитать вместимость расширительного бака в отопительной системе.

Объем расширительного бака не может входить в общий теплоснабжения. Это зависимые величины, которые рассчитываются в строгой очередности – сначала отопление, а уже потом расширительный бак.

Открытый расширительный бачок

Открытый расширительный бак

Для вычисления объема открытого расширительного бака в системе отопления можно воспользоваться менее трудоемкой методикой. К нему предъявляются меньшие требования, так как фактически он необходим для контроля уровня теплоносителя.

Главной величиной является температурное расширение воды по мере повышения ее степени нагрева. Этот показатель равен 0,3% на каждые +10°С. Зная общий объем отопительной системы и тепловой режим работы можно вычислить максимальный объем бака. При этом следует помнить, он может быть заполнен теплоносителем только на 2/3. Предположим, что вместимость труб и радиаторов составляет 450 л, а максимальная температура равна +90°С. Тогда рекомендуемый объем расширительного бака вычисляется по следующей формуле:

Vбак=450*(0,003*9)/2/3=18 литров.

Полученный результат рекомендуется увеличить на 10-15%. Это связанно в возможными изменениями общего расчет объема воды в системе отопления при установке дополнительных батарей и радиаторов.

Если открытый расширительный бак выполняет функции контроля уровня теплоносителя – максимальный уровень его заполнения определяется установленным дополнительным боковым патрубком.

Расчёт объёма радиаторов и батарей отопления

Биметаллический радиатор отопления в разрезе

Для выполнения точного вычисления необходимо знать объём воды в радиаторе отопления. Этот показатель напрямую зависит от конструкции компонента, а также его геометрических параметров.

Также как и при вычислении объема отопительного котла, жидкость заполоняет не весь объем радиатора или батареи. Для этого в конструкции есть специальные каналы, по которым протекает теплоноситель. Корректное вычисление объёма воды в радиаторе отопления может быть выполнено только после получения следующих параметров прибора:

  • Межосевое расстояние между прямыми и обратным трубопроводами в батареи. Оно может составлять 300, 350 или 500 мм;
  • Материал изготовления. В чугунных моделях наполнение горячей водой намного больше, чем в биметаллических или алюминиевых;
  • Количество секций в батареи.

Лучше всего узнать точный объём воды в отопительном радиаторе из технического паспорта. Но если такой возможности нет – можно взять в расчет примерные величины. Чем больше межосевое расстояние у батареи – тем больший объем теплоносителя в ней поместится.

Межосевое расстояниеЧугунные батареи, объем л.Алюминиевые и биметаллические радиаторы, объем л.
3001,20,27
3500,3
5001,50,36

Для расчета общего объема воды в системе отопления с панельными металлическими радиаторами следует узнать их тип. Их вместимость зависит от количества нагревательных плоскостей — от 1 до 2-х:

  • У 1 типа батареи на каждые 10 см приходится 0,25 объема теплоносителя;
  • Для 2 типа этот показатель увеличивается до 0,5 л на 10 см.

Полученный результат необходимо умножить на количество секций или общую протяженность радиатора (металлического).

Для правильного расчета объема отопительной системы отопления с дизайнерскими радиаторами нестандартной формы нельзя применять вышеописанную методику. Их объем моно узнать только у производителя или его официального представителя.

Расчет объема теплового аккумулятора

Тепловой аккумулятор

В некоторых отопительных системах устанавливаются вспомогательные элементы, которые также частично могут заполняться теплоносителем. Наиболее вместительным из них является тепловой аккумулятор.

Проблема в вычислении общего объема воды в отопительной системе вместе с этим компонентом заключается в конфигурации теплообменника. Фактически тепловой аккумулятор не заполняется горячей водой из системы – он служит для ее нагрева от имеющейся в нем жидкости. Для корректного расчета нужно знать конструкцию внутреннего трубопровода. Увы, но производители не всегда указывают тот параметр. Поэтому можно воспользоваться примерной методикой вычислений.

Перед установкой теплового аккумулятора его внутренний трубопровод заполняется водой. Ее количество рассчитывается самостоятельно и учитывается при вычислении общего объема отопления.

Если отопительная система модернизируется, устанавливаются новые радиаторы или трубы – необходимо выполнить дополнительный перерасчет ее общего объема. Для этого можно взять характеристики новых приборов и вычислить их вместимость по вышеописанным методикам.

В качестве примера можно ознакомиться с методикой расчета расширительного бака:

Расчет воды в системе отопления

В каждой части нашей стране нужно в зимний период обогревать дачу. Любой здравомыслящий житель предпочитает разобраться: как модернизировать обогрвевающий комплекс дачи. Скорее всего Вы в курсе, что источники тепла перманентно становятся дороже. Трудно вообразить себе жизнь проживающего в нашей стране без отопления дачи. На web сайте представлено большое количество разных обогревательных комплексов коттеджа, применяющих абсолютно различные приемы извлечения тепла. Любую систему обогрева возможно реализовывать как отдельный комплекс или гибридно.

Как рассчитать объем воды в трубе? Такой вопрос возникает, например, при расчете системы отопления. Когда система почти готова, необходимо рассчитать объем воды в системе отопления для того, чтобы выбрать гидроаккумулятор. Знать эту цифру необходимо в некоторых других ситуациях. Например, если в теплоноситель добавляется антифриз, или полностью заливается антифризом, объем системы необходимо знать для того, чтобы купить правильное количество антифриза.

Объем гидроаккумулятора для системы отопления должен составлять 10-12 % объема всей воды в системе. Последняя цифра складывается из объема воды во всех радиаторах отопления, плюс объема воды в котле отопления, плюс объем воды в трубах для отопления . Объем воды в радиаторах складывается из объема воды в каждой секции радиатора, помноженном на количество секций. Это значение указывается в технических паспортах на радиаторы. Например, объем воды в одной секции чугунных радиаторов 500 мм равен примерно 1,5 литра. У биметаллических радиаторов это значение может быть в 10 раз меньше. Надо смотреть технический паспорт.

Объем воды в котле отопления указывается в паспорте. Например, объем воды в жуковских АОГВ составляет приблизительно 60 литров. Этот объем полезно знать также при спуске воды из отдельных частей системы отопления.

Объем воды в трубах вычисляется как сумма произведений объемов воды в метре трубы каждого диаметра на количество метров труб данного диаметра. Таким образом, расчет объема воды в трубе представляет собой достаточно простую арифметическую задачу.

Номинальный размер (внешний диаметр), мм

Внутреннее сечение, мм кв.

Источник: http://tedremont.com/index.php/obem-vody-v-trube

Данные для расчет объема теплоносителя в системе отопления. Стальные, алюминиевые, чугунные радиаторы. Объем воды в полипропиленовых трубах.

04.05.12

Расчет объема воды в системе отопления.

Решение о монтаже системы при помощи радиаторов отопления. повлечет за собой ряд технических вопросов. Одной из первых задач, которую необходио будет решить, это посчитать объем воды в проэктируемой системе отопления. Крупные монтажные организации для этих целей используют программу HERC CO. Если сама система не велика и нет желания глубже познавать основы тепломеханики, можно это сделать самому. Расчет, правда, будет приблизительным, но полученные результаты для несложной системы отопления будут приемлемыми.

Объем жидкости в расширительном баке. Размер бака- величина равная 10% от объма воды в системе. Если отопительный котел с мембранным баком – смотрим в тех. данные котла.

Источник: http://akvasvit.prom.ua/a70029-raschet-obema-vody.html

Как рассчитать объём воды в трубе?

Здравствуйте! Для того, чтобы правильно спроектировать систему отопления, нужно иметь о ней как можно больше исходной информации: площадь помещений, объём помещений, материал из которого изготовлены стены, степень теплоизоляции и т. д. Я хочу обратить Ваше внимание на один из таких факторов, как объём воды в трубах системы отопления. Как расчитать объём воды в трубе, ведь для того, чтобы правильно подобрать мощность котла, необходимо обязательно знать объём воды в системе отопления, плюс, объём воды в котле!

Чтобы справиться с этой задачей нам нужно знать сколько метров трубы в системе отопления, причём каждого диаметра, т. е. сколько трубы диаметром 20мм. сколько трубы диаметром 25мм. и т. д.

&nbspДля чего это нужно? Сейчас Вы сами всё поймёте.

Взгляните на картинку снизу. В этой таблице представлены основные используемые в бытовых системах отопления диаметры труб, а так же объём воды в этих трубах.

Как не трудно догадаться, остаётся колличество метров, каждого диаметра, помножить на объём воды, согласно таблицы. Затем полученный результат суммируем, и прибавляем объём воды в котле.

В паспорте каждого котла, имеются данные о максимальном объёме воды в системе отопления, который котёл может нагревать без потери мощности. Например: ваш котёл, по паспорту имеет мощность — 20 Квт. и допустимый объём теплоносителя — 180 литров. После подсчётов, у Вас получился объём воды в трубах равный — 220 литров. Что из этого следует? А то что если у вас площадь помещений например 120-150 кв. м. то котёл скорее всего справится с нагревом системы, а если площадь 180-200 кв. м. то всё, — зимой, в более сильный мороз придётся мёрзнуть. В таком случае вам нужен котёл большей мощности, например — 24 Квт. (Надеюсь вы понимаете, что эти цифры условные!)

Надеюсь, при расчёте системы отопления, эта информация поможет Вам избежать ненужных проблем!

Хочу добавить, что на картинке, объём воды в секции радиатора, имеется в виду чугунный радиатор. В алюминиевых радиаторах, в одной секции объём жидкости составляет приблизительно 300гр. в зависимости от моделей.

Ну вот и всё! Пользуйтесь на здоровье.

С Вами был — Владимир Войнаровский, всего вам доброго!

Источник: http://3-w.name/materials/41

Смотрите также:

01 апреля 2021 года

Мощность, необходимая для нагрева объема жидкости

РАСЧЕТ МОЩНОСТИ, НЕОБХОДИМОЙ ДЛЯ НАГРЕВА ОБЪЕМА ЖИДКОСТИ

Онлайн расчет

Мощность, которая должна быть установлена ​​для повышения температуры в течение заданного времени объема жидкости, содержащейся в резервуаре, является результатом 2 расчетов: расчета мощности для повышения температуры жидкости (Pch) и расчет теплопотерь (Pth).

Установленная мощность (кВт) = Тепловая мощность (Pch) + Тепловые потери (Pth)

1 / Расчет мощности, необходимой для повышения температуры объема жидкости:

— Мощность обогрева: Pch (кВт)

— Вес жидкости: M (кг)

— Удельная теплоемкость жидкости: Cp (ккал / кг × ° C)

— Начальная температура: t1 (° C)

— Требуемая конечная температура: t2 (° C)

— Время нагрева: T (ч)

1,2 : Коэффициент безопасности, связанный с нашими производственными допусками и вариациями мощности сети

Pch = (M × Cp × (t2 — t1) × 1,2) ÷ (860 × T)

a / Расчет массы нагреваемой жидкости:

— Вес жидкости: M (кг)

— Объем нагреваемой жидкости: В (дм3 или литр)

— Плотность жидкости: ρ (кг / дм3)

M = V × ρ

Значения ρ / Cp для некоторых жидкостей:

Вода: 1/1

Минеральное масло: 0,9 / 0,5

Битум: 1,1 / 0,58

Уксусная кислота: 1,1 / 0,51

Соляная кислота: 1,2 / 0,6

Азотная кислота: 1,5 / 0,66

б / Расчет объема жидкости:

В цилиндрической емкости:

— Объем бака: В (дм3)

— Диаметр бака: (дм)

— Высота жидкости: h2 (дм)

В = π × (∅² ÷ 4) × h2

В прямоугольном резервуаре:

— Объем бака: В (дм3)

— Длина бака: L (дм)

— Ширина бака: Вт (дм)

— Высота жидкости: h2 (дм)

V = Д × Ш × В2

2 / Расчет мощности, необходимой для компенсации тепловых потерь:

— Тепловые потери: Pth (кВт)

— Площадь теплообменной поверхности резервуара: S (м2)

— Требуемая конечная температура: t2 (° C)

— Температура: ta (° C)

— Коэффициент обмена: K (ккал / ч × м2 × ° C)

1,2 : Коэффициент безопасности, связанный с нашими производственными допусками и вариациями мощности сети

Pth = (S × (t2 — ta) × K × 1,2) ÷ 860

Коэффициент обмена K как функция скорости ветра и толщины изоляции:

a / Расчет площади обменной поверхности резервуара:

Площадь цилиндрической емкости:

— Площадь резервуара: S (м2)

— Диаметр резервуара: (м)

— Высота резервуара: х3 (м)

S = (π × (∅² ÷ 4)) + (π × ∅ × h3)

Площадь прямоугольного резервуара:

— Площадь резервуара: S (м2)

— Длина резервуара: L (м)

— Ширина бака: Вт (м)

— Высота резервуара: х3 (м)

S = ((Д + Ш) × в3 × 2) + (Д × Ш)

Энергия, необходимая для нагрева воды

Количество энергии, необходимое для нагрева воды, пропорционально разнице температур чего?

Q = m⋅Cp⋅ΔT

Где…

м = масса нагретой воды

Cp = теплоемкость воды (1 БТЕ / фунт ºF)

ΔT = разница температур.

Не забудьте согласовать единицы измерения. Поскольку C p измеряется в фунтах, масса нагретой воды также должна измеряться в фунтах. Таким образом, если вы знаете только количество галлонов, вы должны преобразовать его в фунты. Один галлон воды = около 8,3 фунта, поэтому умножьте количество галлонов на 8,3, чтобы определить вес в фунтах.

Пример 1

По оценкам Министерства энергетики США, семья из четырех человек, принимающая душ в течение 10 минут в день, потребляет около 700 галлонов горячей воды в неделю.Вода для душа поступает в дом при температуре 55ºF и ее необходимо нагреть до 120ºF.

Чтобы рассчитать необходимое количество тепла, определите переменные:
м = масса нагретой воды = 700 галлонов = 5810 фунтов
C p — теплоемкость воды = 1 БТЕ / фунт ºF (дано)
ΔT = разность температур = 120 ºF — 55 ºF

Тепловая энергия, необходимая для нагрева 700 галлонов, может быть рассчитана следующим образом:

Требуемое тепло = 5810 фунтов x 1 БТЕ / фунт ºF x (120 ºF — 55 ºF)
Требуемое количество тепла = 5810 фунтов x 65 ºF
Требуемое количество тепла = 377 650 БТЕ / неделя

Потребность в тепле на один год:

377650 БТЕ / неделя x 52 недели / год = 19 637 800 БТЕ / год или 5755 кВт · ч

Предполагается, что стоимость природного газа составляет 10 долларов США за MMBTU (1 MMBTU = 1000000 BTU), а стоимость электроэнергии равна 0.092 за кВтч, затраты на газ составят 196,37 долларов, а затраты на электроэнергию — 529,46 долларов. Понятно, что электрическое тепло дороже природного газа.

Пример 2

Оцените% экономии энергии электрического водонагревателя, который нагревает 100 галлонов воды в день, когда температура устанавливается на 110 ° вместо 120 ° F. Подвал отапливается и имеет температуру 65 ° F. Срок службы водонагревателя — около 10 лет. Используйте соответствующую стоимость электроэнергии и сравните эксплуатационные расходы.

Требуемое количество тепла (БТЕ) ​​= m x C p x (разница температур)

Где C p — теплоемкость воды (1 БТЕ / фунт / фут), а m — масса воды (предположим, что 1 галлон содержит 8,3 фунта воды, а 3,412 БТЕ = 1 кВт · ч)

Решение:

Энергия, необходимая для нагрева воды до 120 ° F :

= м × Cp × ΔT

= 100 галдаев × 8,3 фунт-галл︸м × 1 БТЕЛб ° F︸Cp × (120-65) ° F︸ΔT

= 100 галдей × 8,3 фунта × 1 БТЕ / фунт ° F × (120-65) ° F

= 45 650 БТЕ / день

В год необходимое количество энергии:

45 650 БТЕ в день × 365 дней в году = 16 662 250 БТЕ в год

За 10-летний период необходимая энергия составляет 166 622 500 БТЕ, что равно 48 834 кВтч.

166 622 500 БТЕ × 1 кВт · ч 4412 БТЕ = 48 834 кВт · ч

Эксплуатационные расходы за весь срок службы:

48 834 кВтч2 × 0,09 USD кВтч = 4395,06 USD

Энергия, необходимая для нагрева воды до 110 ° F :

= м × Cp × ΔT

= 100 галдаев × 8,3 фунт-галл︸м × 1 БТЕЛб ° F︸Cp × (110-65) ° F︸ΔT

= 100 галдей × 8,3 фунта × 1 БТЕ / фунт ° F × (110-65) ° F

= 37 350 БТЕ / день

В год необходимое количество энергии:

37350 БТЕ в день × 365 дней в году = 13 632 750 БТЕ в год

За 10-летний период необходимая энергия составит 136 327 500 БТЕ, что равно 39 995 кВтч.

136,327,500 БТЕ × 1 кВтч 4412 БТЕ = 39,995 кВтч

Эксплуатационные расходы в течение срока службы:

39 955 кВтч2 × 0,09 USD кВтч = 3 595,95 USD

Расчетная экономия энергии,% :

4395,06 долл. США — 3595,95 долл. США = 799,11 долл. США

сбережений

799,11 $ 4395,06 $ = 18,2% экономии

Как рассчитать время нагрева или охлаждения | Блог

Во многих случаях может быть полезно узнать, сколько времени потребуется, чтобы нагреть или охладить вашу систему до определенной температуры.Или вы можете рассчитать, сколько энергии требуется для нагрева или охлаждения данного объема жидкости за определенный промежуток времени.

К счастью, есть довольно простое уравнение, которое можно использовать, если вы знаете массу жидкости в ванне, ее удельную теплоемкость, разницу температур, а также мощность или время.

Тем не менее, использование этого уравнения не совсем надежно, поскольку существуют различные факторы, которые могут нарушить расчет. В этом посте мы рассмотрим уравнение для расчета времени нагрева или охлаждения и причины, по которым вам следует искать систему с чуть большей мощностью, чем вы думаете, что вам нужно.

Расчет времени нагрева или охлаждения

Вы можете использовать то же основное уравнение для расчета времени нагрева или охлаждения, хотя для расчета времени охлаждения требуется немного больше работы. При нагреве подаваемая мощность постоянна, но при охлаждении мощность (или охлаждающая способность) изменяется в зависимости от температуры.

Расчет времени нагрева

Чтобы узнать, сколько времени потребуется для нагрева ванны до определенной температуры, можно использовать следующее уравнение:

t = mcΔT / P

Где:

  • т — время нагрева или охлаждения в секундах
  • м — масса жидкости в килограммах
  • c — удельная теплоемкость жидкости в джоулях на килограмм и на Кельвин
  • ΔT — разница температур в градусах Цельсия или Фаренгейта
  • P — мощность, с которой подается энергия, в ваттах или джоулях в секунду

Аналогичным образом, чтобы рассчитать мощность, необходимую для нагрева или охлаждения ванны до определенной температуры за заданный промежуток времени, вы можете использовать это уравнение:

P = mcΔT / т

Хотя этим уравнениям довольно просто следовать, может возникнуть некоторая путаница, когда дело доходит до того, какие единицы использовать.Вместо этого вы можете использовать онлайн-калькулятор.

Этот красивый и простой калькулятор позволяет рассчитать время, мощность или потребляемую энергию, но он годится только для расчетов с использованием воды. Если вам нужно рассчитать время нагрева для других жидкостей, этот калькулятор больше подходит, поскольку он позволяет вам ввести удельную теплоемкость вещества, которое вы используете. У него есть две опции, позволяющие рассчитать либо требуемую мощность, либо необходимое время.

Калькулятор услуг по технологическому отоплению.

Расчет времени охлаждения

Для расчета времени охлаждения можно использовать то же уравнение, что и выше. Вопрос в том, какое значение вы должны использовать для мощности. Холодопроизводительность (или мощность охлаждения) зависит от температуры. Холодопроизводительность снижается при более низких заданных температурах, поскольку разница температур между охлаждающей жидкостью и хладагентом меньше. Теплопередача снижается, поэтому снижается охлаждающая способность.

Например, вот характеристики охлаждающей способности для охлаждающих и нагреваемых циркуляционных ванн PolyScience 45 л.

У вас есть несколько вариантов, в зависимости от того, насколько точно вы хотите, чтобы ваш расчет был:

  • Используйте консервативную оценку , принимая более низкую мощность до следующей указанной температуры. Например, принимая указанные выше характеристики, вы можете предположить, что охлаждающая способность составляет 250 Вт для всех температур от -20 ° C до 0 ° C и 800 Вт для всех температур от 0 ° C до 20 ° C.
  • Возможно заниженная оценка, но с большей точностью путем измерения средней мощности между различными температурами.
  • Используйте быстрый и грязный (и, вероятно, менее точный) метод , учитывая только охлаждающую способность при средней температуре.
  • Выбирайте альтернативный быстрый метод , который использует средние значения холодопроизводительности в различных точках диапазона температур (точки должны включать верхний и нижний пределы диапазона температур, чтобы это было жизнеспособным).

Что делать, если ваша минимальная температура ниже минимальной указанной в спецификации холодопроизводительности? Как правило, это не должно вызывать беспокойства, поскольку значения холодопроизводительности обычно указываются для температуры, равной или ниже минимальной температуры агрегата.

Если вы пытаетесь охладить до более низкой температуры, она может быть слишком низкой, а это значит, что устройство не сможет обеспечить необходимую вам охлаждающую способность. Однако, если в технических характеристиках не указана охлаждающая способность при температуре, близкой к минимальной температуре устройства, вы можете попросить производителя или нас предоставить необходимую информацию.

Факторы, которые следует учитывать при расчете времени нагрева или охлаждения

Как уже упоминалось, есть несколько причин, по которым ваши расчеты могут не дать реалистичного результата.Таким образом, если вы используете это уравнение для определения времени нагрева или охлаждения, вы должны предположить, что процесс займет немного больше времени, чем ожидалось. Точно так же, если вы используете расчет, чтобы определить, сколько энергии вам нужно для достижения заданного времени нагрева или охлаждения, вы должны предположить, что потребуется некоторая дополнительная мощность.

Вот факторы, которые необходимо учитывать:

1. Повышение или потеря тепла окружающей среды

Прирост или потеря тепла из-за окружающей среды неизбежны даже в закрытой системе.Охлаждаемая система может поглощать тепло из окружающего воздуха или компонентов системы, снижая ее охлаждающую способность. В системе отопления вы можете терять тепло в окружающий воздух или компоненты системы, например, когда оно проходит по трубам или трубам.

Изоляция вашей системы и контроль температуры окружающей среды могут помочь, но все же может быть неизвестное количество тепла.

2. Потери жидкости из-за испарения

Если вы работаете с открытой системой, вы можете потерять часть жидкости из-за испарения во время процесса нагрева или охлаждения.Количество происходящего испарения будет зависеть от нескольких факторов, в том числе:

  • Используемая жидкость: Жидкости с более низкой точкой кипения, такие как этанол, метанол и вода, могут легко испаряться.
  • Площадь поверхности ванны: Чем больше площадь поверхности, тем выше скорость испарения.
  • Используемый диапазон температур: Чем выше температура, тем выше скорость испарения.

Потеря тепла происходит из-за испарения, и когда вы тратите тепловую энергию впустую, время, необходимое для нагрева ванны, увеличивается.Кроме того, в результате потери жидкости значение массы (m) в уравнении не будет точным, что может привести к ухудшению результатов. Если вы используете смесь из двух или более жидкостей, и один компонент смеси испаряется быстрее, чем другие, соотношение будет изменено, что приведет к неточности в определении удельной теплоемкости (c).

Испарение трудно предсказать и учесть точно (и если вы достаточно хорошо разбираетесь в термодинамике, чтобы делать это комфортно, вы, вероятно, не читали бы эту статью).Таким образом, лучше всего либо оценить скорость испарения с помощью эмпирического теста, а затем учесть это математически, используя теплоту испарения, либо просто добавить коэффициент безопасности.

3. Проблемы с обслуживанием

В системах отопления из-за отложений минералов на элементах водяной бани обычно накапливается накипь. При отсутствии контроля это накопление может повлиять на эффективность передачи тепла от элемента к жидкости. Поскольку элемент изолирует накипь, требуется больше энергии для нагрева системы до желаемой температуры.

При нагреве это увеличивает время, необходимое для достижения желаемой температуры в системе заданной мощности. Если вы смотрите на мощность, она увеличит количество энергии, необходимое для достижения желаемой температуры за определенное время.

Для систем охлаждения на холодопроизводительность также могут влиять проблемы с обслуживанием. В конденсаторах с водяным охлаждением коррозия, образование накипи или биологический рост могут препятствовать передаче тепла, снижая охлаждающую способность. В конденсаторах с воздушным охлаждением скопление пыли и мусора на лопастях и ребрах вентилятора может уменьшить воздушный поток, оказывая аналогичное влияние на снижение охлаждающей способности.

Регулярное техническое обслуживание вашего устройства, включая очистку различных компонентов, промывку жидкости и использование ингибитора коррозии, может помочь.

Определение размеров нового водонагревателя

Водонагреватель подходящего размера удовлетворит потребности вашего дома в горячей воде, но при этом будет работать более эффективно. Поэтому перед покупкой водонагревателя убедитесь, что он подходящего размера.

Здесь вы найдете информацию о том, как подобрать эти системы:

  • Водонагреватели без резервуаров или по запросу
  • Солнечные водонагреватели
  • Накопительные водонагреватели и водонагреватели с тепловым насосом (с резервуаром).

Для определения размеров комбинированных систем водяного отопления и отопления помещений, в том числе некоторых систем с тепловыми насосами, безбакерных змеевиков и косвенных водонагревателей, проконсультируйтесь с квалифицированным подрядчиком.

Если вы еще не решили, какой тип водонагревателя лучше всего подходит для вашего дома, узнайте больше о выборе нового водонагревателя.

Определение размеров водонагревателей без резервуаров или водонагревателей по запросу

Водонагреватели без резервуаров или водонагреватели по запросу рассчитаны на максимальное повышение температуры, возможное при заданном расходе.Следовательно, чтобы определить размер водонагревателя по запросу, вам необходимо определить скорость потока и повышение температуры, необходимое для его применения (весь дом или удаленное приложение, например, просто ванная) в вашем доме.

Сначала укажите количество устройств для горячей воды, которые вы планируете использовать одновременно. Затем сложите их скорости потока (галлонов в минуту). Это желаемая скорость потока, необходимая для водонагревателя по запросу. Например, предположим, что вы ожидаете одновременного использования крана горячей воды с расходом 0.75 галлонов (2,84 литра) в минуту и ​​насадка для душа с расходом 2,5 галлона (9,46 литра) в минуту. Скорость потока через водонагреватель по запросу должна быть не менее 3,25 галлона (12,3 литра) в минуту. Для уменьшения расхода установите арматуру на слабый расход воды.

Для определения повышения температуры вычтите температуру поступающей воды из заданной температуры на выходе. Если вы не знаете иначе, предположите, что температура входящей воды составляет 50ºF (10ºC). В большинстве случаев вам нужно нагреть воду до 120ºF (49ºC).В этом примере вам понадобится водонагреватель по запросу, который повышает температуру на 70ºF (39ºC) для большинства применений. В посудомоечных машинах без внутреннего нагревателя и в других подобных устройствах вам может потребоваться нагреть воду до 140ºF (60ºC). В этом случае вам потребуется повышение температуры на 90ºF (50ºC).

Водонагреватели, пользующиеся наибольшим спросом, рассчитаны на различные температуры на входе. Как правило, повышение температуры воды на 70ºF (39ºC) возможно при расходе 5 галлонов в минуту через газовые водонагреватели и 2 галлона в минуту через электрические.Более высокая скорость потока или более низкая температура на входе иногда могут снизить температуру воды в самом дальнем кране. Некоторые типы безбаквальных водонагревателей имеют термостатическое управление; они могут изменять свою температуру на выходе в зависимости от расхода воды и температуры на входе.

Расчет солнечной системы водяного отопления

Расчет солнечной системы водяного отопления в основном включает определение общей площади коллектора и объема накопителя, которые вам понадобятся для удовлетворения 90–100% потребностей вашего домохозяйства в горячей воде в летний период.Подрядчики солнечной системы используют рабочие листы и компьютерные программы для определения системных требований и размеров коллектора.

Коллекторная площадь

Подрядчики обычно следуют норме примерно 20 квадратных футов (2 квадратных метра) площади коллекторов для каждого из первых двух членов семьи. На каждого дополнительного человека добавляйте 8 квадратных футов (0,7 квадратных метра), если вы живете в районе Солнечного пояса США, или 12–14 квадратных футов, если вы живете на севере Соединенных Штатов.

Объем хранения

Небольшого (от 50 до 60 галлонов) резервуара для хранения обычно достаточно для одного-двух-трех человек.Средний (80 галлонов) резервуар для хранения хорошо подходит для трех-четырех человек. Большой резервуар подходит для четырех-шести человек.

Для активных систем размер солнечного накопителя увеличивается с размером коллектора — обычно 1,5 галлона на квадратный фут коллектора. Это помогает предотвратить перегрев системы при низкой потребности в горячей воде. В очень теплом, солнечном климате некоторые эксперты предлагают увеличить это соотношение до 2 галлонов хранилища на 1 квадратный фут площади коллектора.

Другие расчеты

Дополнительные расчеты, связанные с определением размеров вашей солнечной системы водяного отопления, включают оценку солнечного ресурса вашей строительной площадки и определение правильной ориентации и наклона солнечного коллектора. Посетите страницу солнечных водонагревателей, чтобы узнать больше об этих расчетах.

Определение размеров водонагревателей с накопительным и тепловым насосом (с баком)

Для правильного определения размеров накопительного водонагревателя для вашего дома, включая водонагреватель с тепловым насосом с баком, используйте номинал первого часа водонагревателя.Рейтинг за первый час — это количество галлонов горячей воды, которое водонагреватель может подавать в час (начиная с бака, полного горячей воды). Это зависит от емкости бака, источника тепла (горелка или элемент) и размера горелки или элемента.

На этикетке EnergyGuide рейтинг первого часа указан в верхнем левом углу как «Емкость (оценка за первый час)». Федеральная торговая комиссия требует наличия этикетки EnergyGuide на всех новых обычных водонагревателях, но не на водонагревателях с тепловым насосом.В документации по продукту от производителя также может быть указана оценка за первый час. Ищите модели водонагревателей с рейтингом в первый час, который соответствует в пределах 1 или 2 галлона вашей потребности в час пик — дневной пиковой потребности в горячей воде для вашего дома за 1 час.

Чтобы оценить потребность в горячей воде:

  • Определите, в какое время дня (утро, полдень, вечер) вы используете больше всего горячей воды в своем доме. Помните о количестве людей, проживающих в вашем доме.
  • Используйте таблицу ниже, чтобы оценить максимальное использование горячей воды в течение этого одного часа дня — это ваша потребность в час максимальной нагрузки.Примечание: таблица не оценивает общее ежедневное потребление горячей воды.

Пример рабочего листа показывает общую потребность в 36 галлонов в час пик. Следовательно, этому домашнему хозяйству потребуется модель водонагревателя с мощностью от 34 до 38 галлонов в первый час.

60

Рабочий лист для оценки потребности в пиковый час / рейтинг в первый час *
Использование Среднее количество галлонов горячей воды на одно использование Время использования в течение 1 часа часа

галлонов4
Душ 10 × =
Бритье (.05 галлонов в минуту) 2 × =
Ручное мытье посуды или приготовление пищи (2 галлона в минуту) 4 × = = = Автоматическая посудомоечная машина 6 × =
Стиральная машина для одежды 7 × =
9060 9060 Peak 9060 =
ПРИМЕР
3 ливня 10 × 3 9060 1 = 2
1 мытье посуды вручную 4 × 1 = 4
Пиковая потребность в часах = 36

Энергетическая программа рассчитана на основе информации из Федеральной программы управления энергопотреблением.
* Приведенная выше таблица основана на стандартном использовании без каких-либо мер по экономии воды.

Урок 3: Солнечные водонагревательные системы; Размещение и калибровка

Введение

Видимый свет ( инсоляция ) является основным источником энергии, собираемой системами, которые обеспечивают тепло помещений, тепло воды и электричество для домов. Из-за наклона оси Земли количество солнечной инсоляции, падающей на любую точку на поверхности Земли, меняется в течение года.Ежедневно и сезонно количество световой энергии, падающей на поверхность, изменяется от восхода до захода солнца. Атмосферные условия и высота над уровнем моря также являются факторами, влияющими на количество света, достигающего поверхности Земли.

Для участков выше и ниже экватора сезонные колебания обычно отмечаются весенним и осенним равноденствиями, а также летним и зимним солнцестоянием. Равноденствия определяются как время года, когда солнце пересекает экватор (март и 21/22 сентября).В это время наблюдается равное количество часов светового дня и ночи. Летнее и зимнее солнцестояние определяются как время, когда солнце достигает своей самой высокой / самой низкой широты. В северных широтах летнее солнцестояние приходится на 21/22 июня, а зимнее солнцестояние — 21/22 декабря. Летнее солнцестояние — это дата, когда количество световых часов самое длинное, а зимнее солнцестояние — самое короткое количество световых часов. В южном полушарии солнцестояние как раз наоборот.

Перед установкой солнечной водонагревательной системы вы должны сначала рассмотреть солнечный ресурс участка, так как эффективность и конструкция солнечной водонагревательной системы зависят от того, сколько солнечной энергии достигает строительной площадки.Вам также необходимо правильно подобрать размер системы, чтобы обеспечить потребности дома в горячей воде. В этом уроке вы узнаете, как разместить и определить размер солнечной водонагревательной системы.

Энергетические расчеты и единицы

Мы должны уметь измерять и сравнивать энергию и другие величины, чтобы иметь возможность оценить размер солнечных водонагревательных и солнечных электрических систем. Следовательно, нам необходимо понять, какие энергетические расчеты и единицы измерения энергии мы используем для этих оценок.

Таблица преобразования

Определения:

Тепло:
Британская тепловая единица (БТЕ): количество энергии для подъема 1 фунта воды на 1 градус Фаренгейта

Therm: 100 000 британских тепловых единиц

DekaTherm (DKT) : 1 000 000 британских тепловых единиц
Природный газ содержит около 1 датской тонны энергии на 1000 кубических футов газа.

Электроэнергия и энергия
1 Вт = 1 В * 1 А в чисто резистивных цепях

1000 Вт = 1 киловатт (кВт) (это мощность)

1 кВт * 1 час = 1 киловатт-час (это энергия)

В начало

Размещение солнечной водонагревательной системы

Географическая ориентация и наклон коллектора могут влиять на количество солнечного излучения, которое получает система.

Солнечные водонагревательные системы используют как прямое, так и рассеянное солнечное излучение. Несмотря на более холодный северный климат, Пенсильвания по-прежнему предлагает достаточный солнечный ресурс. Как правило, если место установки не затемнено с 9 до 15 часов. и выходит на юг, это хороший кандидат для солнечной системы водяного отопления.

PVWatts (www.pvwatts.org) — полезный онлайн-калькулятор, который помогает определить солнечные ресурсы в заданном месте. В таблице ниже показаны средние летние, зимние и годовые значения солнечной радиации для Уилкс-Барре, штат Пенсильвания.PVWatts может помочь вам определить солнечный ресурс, доступный на вашем конкретном участке, а также помочь вам оценить размер солнечной системы, необходимой для обеспечения необходимой солнечной энергии для солнечных водонагревательных или солнечных электрических систем. ( Совет: чтобы преобразовать киловатт-часы в британские тепловые единицы, умножьте на 3413. Чтобы преобразовать квадратные метры в квадратные футы, умножьте на 10,76 ).

Среднесуточная солнечная радиация
за январь и июль и ежегодно для различных углов наклона и азимута в Уилкс-Барре, штат Пенсильвания (кВтч / м2 / день)
Источник: веб-сайт PV Watts
www.pvwatts.org

Угол наклона Азимутальный угол Январь Июль Ежегодно
25 180 2,50 5,58 4,19
25 210 2.40 5,81 4,12
25 270 1,72 5,52 3,59
40 180 2,81 5,47 4,19
40 210 2,66 5,45 4.09
40 270 1,69 5,08 3,37
55 180 2,89 4,82 3,98
55 210 2,79 4,85 3,88
55 270 1.62 4,55 3,09

Ориентация коллектора
Ориентация коллектора имеет решающее значение для достижения максимальной производительности солнечной энергетической системы. В целом, оптимальная ориентация солнечного коллектора в северном полушарии — истинный юг (азимут 1800). Однако недавние исследования показали, что, в зависимости от местоположения и наклона коллектора, коллектор может быть повернут до 90 к востоку или западу от истинного юга без значительного снижения его производительности.

Местные климатические условия могут сыграть значительную роль в выборе ориентации коллекторов на восток или запад от истинного юга, а также при определении правильного угла наклона коллекторов. Ориентация и наклон крыш зданий, факторы затенения, эстетика и местные условия также играют важную роль в установке оборудования для сбора солнечных систем.

Вы также должны учитывать такие факторы, как ориентация крыши (если вы планируете установить коллектор на крыше), особенности местного ландшафта, которые затеняют коллектор ежедневно или сезонно, и местные погодные условия (например, туманное утро или облачный день), как эти факторы также могут повлиять на оптимальную ориентацию коллектора.

Наклонный коллектор
Большинство жилых солнечных коллекторов представляют собой плоские панели, которые можно установить на крыше или на земле. Называемые плоскими коллекторами , они обычно фиксируются в наклонном положении, соответствующем широте местоположения. Это позволяет коллекционеру лучше всего улавливать солнце. Эти коллекторы могут использовать как прямые солнечные лучи, так и отраженный свет, проходящий через облака или от земли. Поскольку они используют весь доступный солнечный свет, плоские коллекторы — лучший выбор для многих северных штатов.

Оптимальный угол наклона солнечного коллектора — это угол, равный широте.

Хотя оптимальным углом наклона коллектора является угол, равный широте, плоская установка коллектора на наклонной крыше не приведет к значительному снижению производительности системы и часто желательна по эстетическим соображениям. Однако вы захотите принять во внимание угол наклона крыши при определении размеров системы.

Затенение
Как упоминалось ранее, солнечные коллекторы следует устанавливать на участке, не затененном от 9 а.м. до 15:00 и смотрит на юг. Затенение от гор, деревьев, зданий и других географических объектов может значительно снизить производительность коллектора. Перед установкой солнечной энергетической системы вы должны сначала составить схему движения солнца, чтобы оценить влияние затенения на годовую производительность системы.

В начало

Расчет солнечной водонагревательной системы

Чтобы правильно определить размер солнечной водонагревательной системы, вам необходимо определить общую площадь коллектора и объем хранилища, необходимые для удовлетворения от 90 до 100 процентов потребностей домашнего хозяйства в горячей воде в летний период.Одним из доступных программных средств для расчета размеров солнечной системы водяного отопления является RetScreen (www.retscreen.net/ang/home.php). Если вы планируете проектировать несколько систем солнечного нагрева воды, вы можете загрузить программное обеспечение для горячего водоснабжения с сайта www.retscreen.net/ang/t_software.php. Это программное обеспечение можно использовать для определения размеров солнечных водонагревательных систем, и мы будем использовать его для проверки приведенного ниже примера расчета практических правил.

Размер коллекторной площади
Хорошее практическое правило для определения размеров коллекторной зоны в северных климатических условиях, например в Пенсильвании, состоит в том, чтобы оставить 20 квадратных футов (2 квадратных метра) площади коллектора для каждого из первых двух членов семьи и от 12 до 14 квадратных метров футов для каждого дополнительного человека.

Определение объема хранения
Небольшого (от 50 до 60 галлонов) резервуара для хранения обычно достаточно для одного-двух человек. Средний (80 галлонов) резервуар для хранения хорошо подходит для трех-четырех человек. Большой бак (120 галлонов) подходит для четырех-шести человек.

Для активных солнечных водонагревательных систем размер солнечного накопителя увеличивается с размером коллектора, обычно 1,5 галлона на квадратный фут коллектора. Это помогает предотвратить перегрев системы при низкой потребности в горячей воде.

На веб-сайте Solar Rating and Certification Corporation результаты тепловых характеристик протестированных солнечных коллекторов можно найти по адресу www.fsec.ucf.edu/solar/testcert/collectr/tprdhw.htm. На сайте представлены данные о производительности в диапазоне температур, который подходит для выбора коллектора для нагрева потребности в горячей воде. Ниже приводится страница с этого сайта. Имейте в виду, что эти коллекционеры сертифицированы в соответствии с условиями Флориды. Чтобы выбрать правильный размер коллектора для Пенсильвании, необходима процедура проб и ошибок.


Сертификат коллектора (A)

Коллектор


Остекление


Абсорбер

Площадь брутто

Тепловые характеристики
Промежуточный температурный рейтинг

Производитель

Модель

ФСЭК №

Тип

Материал

Покрытие

кв. Ft

БТЕ / день

БТЕ / фут²

ACR Solar International Corp

Скайлайн 20-01

00030

1

Прозрачный жесткий пластик

Медные трубы и ребра

Селективный

20.07

14800

736

ACR Solar International Corp

Skyline 10-01

00212C

1

Прозрачный жесткий пластик

Медные трубы и ребра

Селективный

10.00

7500

747

AMK-Collectra AG

OPC 10 MK-III

00083

1

Вакуумная стеклянная трубка

Медные трубы и алюминиевые ребра

Селективный

15.67

12500

800

Alfa Casting Corp

* AC-419

83128

1

Стекло

Медные трубы и алюминиевые ребра

Неселективный

18.41

14200

770

Alfa Casting Corp

* ACC-419

83129

1

Стекло

Медные трубы и ребра

Неселективный

18.41

16400

893

Альтернативные энергетические технологии, ООО

АЕ-21

00081N

1

Стекло

Медные трубы и ребра

Селективный

20.77

17600

849

Альтернативные энергетические технологии, ООО

AE-26

00088N

1

Стекло

Медные трубы и ребра

Селективный

25.35

21700

856

Альтернативные энергетические технологии, ООО

AE-32

00089N

1

Стекло

Медные трубы и ребра

Селективный

31.91

27500

862

Альтернативные энергетические технологии, ООО

AE-40

00090N

1

Стекло

Медные трубы и ребра

Селективный

39.79

34400

866

Альтернативные энергетические технологии, ООО

AE-32-E

00036C

1

Стекло

Медные трубы и ребра

Умеренно селективный

31.85

22300

701

Альтернативные энергетические технологии, ООО

AE-40-E

00037C

1

Стекло

Медные трубы и ребра

Умеренно селективный

39.71

27900

704

Альтернативные энергетические технологии, ООО

ST-32E

00119C

1

Стекло

Медные трубы и ребра

Умеренно селективный

30.91

22900

742

Альтернативные энергетические технологии, ООО

ST-40E

00120C

1

Стекло

Медные трубы и ребра

Умеренно селективный

38.62

28400

735

Альтернативные энергетические технологии, ООО

МСК-21

00213N

1

Стекло

Медные трубы и ребра

Селективный

21.50

17400

810

Альтернативные энергетические технологии, ООО

МСК-32

00214N

1

Стекло

Медные трубы и ребра

Селективный

32.67

27200

833

Альтернативные энергетические технологии, ООО

МСК-40

00215N

1

Стекло

Медные трубы и ребра

Селективный

42.15

35100

833

American Solar Network, Ltd.

ASN30A

89011

1

Прозрачный жесткий пластик

EPDM, стабилизированный УФ-излучением

Нет

31.17

21100

676

American Solar Network, Ltd.

ASN45A

89018C

1

Прозрачный жесткий пластик

EPDM, стабилизированный УФ-излучением

Нет

46.50

31600

680

American Solar Network, Ltd.

ASN60A

C

1

Прозрачный жесткий пластик

EPDM, стабилизированный УФ-излучением

Нет

61.83

41600

673

Apricus Solar Co., Ltd.

АП-10

00202N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Селективный

14.45

8500

589

Apricus Solar Co., Ltd.

АП-20

00106N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Селективный

29.16

17300

594

Apricus Solar Co., Ltd.

АП-22

00203N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Селективный

32.11

19100

594

Apricus Solar Co., Ltd.

АП-30

00204N

1

Вакуумная стеклянная трубка

Стеклянный цилиндр

Селективный

43.63

27600

636

Aqua Sol Components Ltd.

6536

00068

1

Стекло

Медные трубы и алюминиевые ребра

Неселективный

36.46

Термосифонная система
Поставленная полезная энергия:
27,300 БТЕ
Коэффициент тепловых потерь:
3,7 БТЕ / ч ° F

* Скорость потока через солнечный коллектор влияет на его производительность, но может или не может влиять на производительность системы, в которой он установлен. Некоторые из перечисленных здесь коллекторов были протестированы при расходах, отличных от указанных в стандартах тестирования.Эти модели коллектора помечены звездочкой (*) непосредственно перед номером модели.

Сравнивая суточную потребность в тепле для горячей воды с тестированными показателями тепловой производительности коллектора, мы хотим выбрать солнечные коллекторы, которые будут производить 45 081 БТЕ / день. Заглянув в столбец БТЕ / день, мы видим, что нам потребуются два коллектора, чтобы соответствовать нашей нагрузке, каждый из которых может обеспечить около 22 541 БТЕ / день.Коллектор AE-32 от компании Alternate Energy Technologies рассчитан на 27 500 БТЕ / день. Каждый из этих коллекторов имеет площадь около 32 квадратных футов. Этот пример выгодно отличается от представленных ранее общих рекомендаций по количеству солнечных коллекторов для установки 20 квадратных футов площади коллектора для первых двух человек и 12 квадратных футов для каждого дополнительного жильца.

Для Пенсильвании резервуар для хранения воды, соединяемый с солнечным коллектором площадью 64 квадратных фута, должен иметь размер не менее 80 галлонов, но лучше использовать резервуар емкостью более 90 галлонов.

В начало

вопросов

  1. Используя программное обеспечение RETScreen, коллекторы AET AE-32 будут производить 0,98 МВтч с июня по август, или 36 347 БТЕ в сутки. Это не соответствует нашей расчетной нагрузке на нагрев воды, поэтому нам нужно выбрать другой коллектор. Поскольку у нас дефицит около 8 734 БТЕ в день, или 24%, нам нужно выбрать коллекционеров примерно на 24% больше, чем наша первоначальная оценка. Мы попробуем коллектор AET AE-40 площадью 40 квадратных футов. Используя программу RET Screen, мы видим, что коллекторы AE-40 произведут 1.08 МВтч с июня по август или около 40 055. Что случилось? Почему мы увеличиваем площадь солнечного коллектора на 25% и получаем только на 10% больше горячей воды? Ответ заключается в том, что по мере того, как количество произведенной энергии приближается к количеству используемой энергии, эффективность системы падает, потому что более высокие температуры системы приводят к большим потерям тепла. Система с двумя коллекторами AE-32 имеет КПД системы 35 процентов, обеспечивая при этом 86% энергии, необходимой в летнее время (86% называется солнечной фракцией).Система с двумя коллекторами AE-40 имеет КПД 31%, обеспечивая при этом 95% энергии, необходимой в летнее время. Помните, мы начали с того, что рассчитали систему, чтобы обеспечить 100% летней энергии для нагрева воды.

    Другой параметр конструкции системы, на который нам нужно обратить внимание, — это размер солнечного резервуара для хранения воды. Предыдущий анализ был выполнен с использованием RETScreen с учетом резервуара на 120 галлонов. Каковы были бы КПД и доля солнечной энергии, если бы мы установили резервуар для хранения на 80 галлонов? Модель RETScreen предсказывает, что при использовании резервуара для хранения емкостью 80 галлонов доля солнечной энергии снижается до 93%, а эффективность в летнее время остается на уровне 31%.Таким образом, резервуар меньшего размера снижает долю солнечной энергии в системе.

    Как работает наша система в год?

    Среднесуточная солнечная радиация
    за январь и июль и ежегодно для различных углов наклона и азимута в Уилкс-Барре, Пенсильвания (кВтч / м2 / день)
    Источник: веб-сайт PV Watts
    www.pvwatts. орг

    Угол наклона Азимутальный угол Январь Июль Ежегодно
    25 180 2.50 5,58 4,19
    25 210 2,40 5,81 4,12
    25 270 1,72 5,52 3,59
    40 180 2,81 5,47 4.19
    40 210 2,66 5,45 4,09
    40 270 1,69 5,08 3,37
    55 180 2,89 4,82 3,98
    55 210 2.79 4,85 3,88
    55 270 1,62 4,55 3,09
  2. Используя данные для Уилкс-Барре в приведенной выше таблице, какова разница в процентах между среднегодовой дневной солнечной инсоляцией, падающей на поверхность, обращенную на истинный юг (азимутальный угол 1800) с наклоном 25 градусов по сравнению с наклоном 55 градусов? Для наклона на 25 градусов по сравнению с поверхностью, наклоненной на 40 градусов?
  3. Какова разница в процентах между среднегодовым значением для поверхности, наклоненной на 25 градусов и обращенной на истинный юг, и той же поверхности, с таким же наклоном, но с азимутальным углом 210 градусов?
  4. Какова разница в процентах между среднегодовым значением для поверхности, наклоненной на 25 градусов и обращенной на истинный юг, и той же поверхности, такого же наклона с азимутальным углом 270 градусов? Для поверхностей с уклоном 40 и 55 градусов?
  5. Учитывая процентные различия, указанные в вопросе 3, какой угол наклона более разумно принять, если у вас не было другого выбора, кроме как установить солнечную систему с азимутальным углом 270 градусов? Пожалуйста, объясните свой ответ.
  6. Если бы вы жили в Уилкс-Барре и хотели максимально улавливать солнечную инсоляцию зимой, с какими углами наклона и азимута вы бы установили солнечные коллекторы? И наоборот, если вы хотите максимизировать летний сбор солнечной энергии, под каким углом наклона и азимута вы бы установили солнечные коллекторы?
  7. В примере расчета размеров солнечной системы общая суточная потребность в тепловой энергии для 80 галлонов горячей воды была рассчитана на уровне 45 081 британских тепловых единиц. Какова будет общая потребность в тепловой энергии для 80 галлонов при температуре горячей воды 1400F и той же температуре холодной воды?
  8. Какова будет потребность в дополнительной энергии для 80 галлонов горячей воды с температурой горячей воды, установленной на уровне 1200F, и солнечной системой нагрева воды, обеспечивающей 1000F воды на входе холодной воды обычного нагревателя горячей воды для бытового потребления? При расчете принимайте тепловые потери для установленной температуры 120 градусов от обычного нагревателя.

В начало

ответы

Учебное пособие по физике

На предыдущей странице мы узнали, что тепло делает с объектом, когда оно накапливается или выделяется. Прирост или потеря тепла приводят к изменениям температуры, изменению состояния или выполнения работы. Тепло — это передача энергии. Когда объект приобретается или теряется, внутри этого объекта будут происходить соответствующие изменения энергии. Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта.Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект. А когда работа сделана, происходит полная передача энергии объекту, над которым она выполняется. В этой части Урока 2 мы исследуем вопрос Как измерить количество тепла, получаемого или выделяемого объектом?

Удельная теплоемкость

Предположим, что несколько объектов, состоящих из разных материалов, нагреваются одинаково.Будут ли предметы нагреваться одинаково? Ответ: скорее всего, нет. Разные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость. Удельная теплоемкость относится к количеству тепла, необходимому для изменения температуры единицы массы (скажем, грамма или килограмма) на 1 ° C. В учебниках часто указывается удельная теплоемкость различных материалов. Стандартные метрические единицы — Джоуль / килограмм / Кельвин (Дж / кг / К). Чаще используются единицы измерения — Дж / г / ° C.Используйте виджет ниже, чтобы просмотреть удельную теплоемкость различных материалов. Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. Д.) И нажмите кнопку «Отправить»; результаты будут отображены в отдельном окне.

Удельная теплоемкость твердого алюминия (0,904 Дж / г / ° C) отличается от удельной теплоемкости твердого железа (0,449 Дж / г / ° C). Это означает, что для повышения температуры данной массы алюминия на 1 ° C потребуется больше тепла, чем для повышения температуры той же массы железа на 1 ° C.Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно вдвое больше тепла по сравнению с тем же изменением температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти вдвое больше, чем у железа.

Теплоемкость указана из расчета на грамм или на килограмм . Иногда значение указывается на основе на моль , и в этом случае оно называется молярной теплоемкостью. Тот факт, что они указаны из расчета на количество , указывает на то, что количество тепла, необходимое для повышения температуры вещества, зависит от его количества.Эту истину, несомненно, знает всякий, кто варил на плите кастрюлю с водой. Вода закипает при температуре 100 ° C на уровне моря и при слегка пониженной температуре на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее сначала нужно поднять до 100 ° C. Это изменение температуры достигается за счет поглощения тепла горелкой печи. Быстро замечаешь, что для того, чтобы довести до кипения полную кастрюлю с водой, требуется значительно больше времени, чем для того, чтобы довести до кипения наполовину полную. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы вызвать такое же изменение температуры.Фактически, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в двойной массе воды.

Удельная теплоемкость также указана из расчета на K или на ° C . Тот факт, что удельная теплоемкость указана из расчета на градус , указывает на то, что количество тепла, необходимое для повышения данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20 ° C до 100 ° C (изменение на 80 ° C) требуется больше тепла, чем для повышения температуры того же количества воды с 60 ° C до 100 ° C (изменение на 40 ° C). ° С). Фактически, для изменения температуры данной массы воды на 80 ° C требуется вдвое больше тепла по сравнению с изменением на 40 ° C. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды вместо холодной.

Это обсуждение удельной теплоемкости заслуживает одного заключительного комментария. Термин «удельная теплоемкость» в некотором роде неправильное название . Этот термин означает, что вещества могут обладать способностью удерживать вещь , называемую теплотой. Как уже говорилось ранее, тепло — это не то, что содержится в объекте. Тепло — это то, что передается к объекту или от него. Объекты содержат энергию в самых разных формах. Когда эта энергия передается другим объектам с разной температурой, мы называем переданную энергию теплом или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергоемкость.

Связь количества тепла с изменением температуры

Удельная теплоемкость позволяет математически связать количество тепловой энергии, полученной (или потерянной) образцом любого вещества, с массой образца и ее результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.

Q = m • C • ΔT

где Q — количество тепла, переданного объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех других ситуациях в науке, значение дельта (∆) для любой величины вычисляется путем вычитания начального значения количества из окончательного значения количества. В этом случае ΔT равно T final — T initial .При использовании приведенного выше уравнения значение Q может быть положительным или отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает, что объект получил тепловую энергию из окружающей среды; это соответствовало бы повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает на то, что объект выделяет тепловую энергию в окружающую среду; это соответствовало бы снижению температуры и отрицательному значению ΔT.

Знание любых трех из этих четырех величин позволяет человеку вычислить четвертое количество. Обычная задача на многих уроках физики включает решение проблем, связанных с отношениями между этими четырьмя величинами. В качестве примеров рассмотрим две проблемы ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.

Пример проблемы 1
Какое количество тепла требуется для повышения температуры 450 граммов воды с 15 ° C до 85 ° C? Удельная теплоемкость воды 4.18 Дж / г / ° C.

Как и любая проблема в физике, решение начинается с определения известных величин и соотнесения их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:

м = 450 г
С = 4,18 Дж / г / ° C
Т начальная = 15 ° С
T окончательная = 85 ° C

Мы хотим определить значение Q — количество тепла.Для этого мы использовали бы уравнение Q = m • C • ΔT. Буквы m и C известны; ΔT можно определить по начальной и конечной температуре.

T = T окончательный — T начальный = 85 ° C — 15 ° C = 70 ° C

Зная три из четырех величин соответствующего уравнения, мы можем подставить их и решить для Q.

Q = m • C • ΔT = (450 г) • (4,18 Дж / г / ° C) • (70 ° C)
Q = 131670 Дж
Q = 1.3×10 5 J = 130 кДж (округлено до двух значащих цифр)

Пример задачи 2
Образец 12,9 грамма неизвестного металла при температуре 26,5 ° C помещают в чашку из пенополистирола, содержащую 50,0 граммов воды при температуре 88,6 ° C. Вода охлаждается, и металл нагревается, пока не будет достигнуто тепловое равновесие при 87,1 ° C. Предполагая, что все тепло, теряемое водой, передается металлу, а чашка идеально изолирована, определите удельную теплоемкость неизвестного металла.Удельная теплоемкость воды составляет 4,18 Дж / г / ° C.

По сравнению с предыдущей проблемой это гораздо более сложная проблема. По сути, эта проблема похожа на две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, потерянного водой (Q вода ), равно количеству тепла, полученного металлом (Q металл ). Поскольку значения m, C и ΔT воды известны, можно вычислить Q water .Это значение Q воды равно значению металла Q . Как только значение металла Q известно, его можно использовать со значением m и ΔT металла для расчета металла Q . Использование этой стратегии приводит к следующему решению:

Часть 1: Определение потерь тепла водой

Дано:

м = 50,0 г
С = 4,18 Дж / г / ° C
Т начальная = 88,6 ° С
Т финальный = 87.1 ° С
ΔT = -1,5 ° C (T конечный — T начальный )

Решение для Q воды :

Q вода = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (-1,5 ° C)
Q вода = -313,5 Дж (без заземления)
(Знак — означает, что вода теряет тепло)

Часть 2: Определите стоимость металла C

Дано:

Q металл = 313.5 Дж (используйте знак +, так как металл нагревается)
m = 12,9 г
Т начальная = 26,5 ° С
T окончательная = 87,1 ° C
ΔT = (T конечный — T начальный )

Решить для металла C :

Переставьте металл Q = m металл • C металл • ΔT металл , чтобы получить металл C = Q металл / (м металл • ΔT металл )

C металл = Q металл / (м металл • ΔT металл ) = (313.5 Дж) / [(12,9 г) • (60,6 ° C)]
C металл = 0,40103 Дж / г / ° C
C металл = 0,40 Дж / г / ° C (округлено до двух значащих цифр)

Тепло и изменения состояния

Приведенное выше обсуждение и соответствующее уравнение (Q = m • C • ∆T) связывает тепло, полученное или потерянное объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло накапливается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количества тепла.

Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца вещества. В таблице ниже перечислены несколько изменений состояния и указаны имена, обычно связанные с каждым процессом.

Процесс

Изменение состояния

Плавка

От твердого до жидкого

Замораживание

От жидкости к твердому веществу

Испарение

От жидкости к газу

Конденсация

Газ — жидкость

Сублимация

Твердое тело в газ

Депонирование

Газ — твердое вещество

В случае плавления, кипения и сублимации к образцу вещества должна быть добавлена ​​энергия, чтобы вызвать изменение состояния.Такие изменения состояния называют эндотермическими. Замораживание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; энергия приобретается льдом, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Есть ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Безусловно, есть.

Количество энергии, необходимое для изменения состояния образца материи, зависит от трех вещей. Это зависит от того, что такое субстанция, от того, сколько субстанции претерпевает изменение состояния, и от того, какое изменение состояния происходит. Например, для плавления льда (твердая вода) требуется другое количество энергии, чем для плавления железа. И для таяния льда (твердая вода) требуется другое количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется другое количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — это три переменные, которые влияют на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердое-жидкое.)

Значения удельной теплоты плавления и удельной теплоты испарения указаны из расчета на количество .Например, удельная теплота плавления воды составляет 333 Дж / грамм. Чтобы растопить 1,0 грамм льда, требуется 333 Дж энергии. Чтобы растопить 10 граммов льда, требуется в 10 раз больше энергии — 3330 Дж. Такое рассуждение приводит к следующим формулам, связывающим количество тепла с массой вещества и теплотой плавления и испарения.

Для плавления и замораживания: Q = m • ΔH плавление
Для испарения и конденсации: Q = m • ΔH испарение

где Q представляет количество энергии, полученной или высвобожденной во время процесса, m представляет собой массу образца, ΔH плавления представляет собой удельную теплоту плавления (на грамм) и ΔH испарения представляет собой удельную теплоемкость плавления. испарение (из расчета на грамм).Подобно обсуждению Q = m • C • ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и испарения; это согласуется с тем фактом, что образец вещества должен набирать энергию, чтобы плавиться или испаряться. Значения Q отрицательны для процесса замораживания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или конденсироваться.

В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.

Пример задачи 3
Элиза кладет в свой напиток 48,2 грамма льда. Какое количество энергии будет поглощено льдом (и высвобождено напитком) в процессе таяния? Теплота плавления воды 333 Дж / г.

Уравнение, связывающее массу (48,2 грамма), теплоту плавления (333 Дж / г) и количество энергии (Q): Q = m • ΔH fusion .Подстановка известных значений в уравнение приводит к ответу.

Q = м • ΔH плавление = (48,2 г) • (333 Дж / г)
Q = 16050,6 Дж
Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)

Пример Задачи 3 включает в себя довольно простой расчет типа plug-and-chug. Теперь мы попробуем пример задачи 4, который потребует более глубокого анализа.

Пример задачи 4
Какое минимальное количество жидкой воды на 26.5 градусов, которые потребуются, чтобы полностью растопить 50,0 граммов льда? Удельная теплоемкость жидкой воды составляет 4,18 Дж / г / ° C, а удельная теплота плавления льда — 333 Дж / г.

В этой задаче лед тает, а жидкая вода остывает. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, на каждый грамм льда необходимо передать 333 Дж энергии. Эта передача энергии от жидкой воды ко льду охлаждает жидкость.Но жидкость может охладиться только до 0 ° C — точки замерзания воды. При этой температуре жидкость начнет затвердевать (замерзнуть), а лед полностью не растает.

Мы знаем следующее о льду и жидкой воде:

Информация о льду:

м = 50,0 г
ΔH плавление = 333 Дж / г

Информация о жидкой воде:

С = 4.18 Дж / г / ° C
Т начальная = 26,5 ° С
T окончательная = 0,0 ° C
ΔT = -26,5 ° C (T конечный — T начальный )

Энергия, получаемая льдом, равна энергии, потерянной из воды.

Q лед = -Q жидкая вода

Знак — указывает, что один объект получает энергию, а другой объект теряет энергию. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:

Q лед = m • ΔH плавление = (50.0 г) • (333 Дж / г)
Q лед = 16650 Дж

Теперь мы можем установить правую часть уравнения равной m • C • ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:

16650 Дж = -Q жидкая вода
16650 Дж = -м жидкая вода • C жидкая вода • ΔT жидкая вода
16650 Дж = -м жидкая вода • (4.18 Дж / г / ° C) • (-26,5 ° C)
16650 Дж = -м жидкая вода • (-110,77 Дж / ° C)
м жидкая вода = — (16650 Дж) / (- 110,77 Дж / ° C)
м жидкая вода = 150,311 г
м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)

Еще раз о кривых нагрева и охлаждения

На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагрева показывала, как температура воды увеличивалась с течением времени по мере нагрева образца воды в твердом состоянии (т. Е. Льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает преобразование воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает преобразование воды из жидкого состояния в газообразное.Эти изменения состояния произошли без каких-либо изменений температуры. Однако добавление тепла к образцу воды, не имеющей температуры фазового перехода, приведет к изменению температуры.

Теперь мы можем подойти к теме кривых нагрева на более количественной основе. На диаграмме ниже представлена ​​кривая нагрева воды. На нанесенных линиях есть пять помеченных участков.

Три диагональных участка представляют собой изменения температуры образца воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Две горизонтальные секции представляют изменения в состоянии воды. На участке 2 проба воды тает; твердое вещество превращается в жидкость. В секции 4 образец воды подвергается кипению; жидкость превращается в газ. Количество тепла, передаваемого воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m • C • ΔT. А количество тепла, переданного воде в секциях 2 и 4, связано с массой образца и теплотой плавления и испарения формулами Q = m • ΔH fusion (секция 2) и Q = m • ΔH испарение (раздел 4).Итак, теперь мы попытаемся вычислить количество тепла, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0 ° C в газообразное состояние при 120,0 ° C. Для расчета потребуется пять шагов — по одному шагу для каждого раздела приведенного выше графика. Хотя удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения удельной теплоемкости:

Твердая вода: C = 2,00 Дж / г / ° C
Жидкая вода: C = 4,18 Дж / г / ° C
Газообразная вода: C = 2.01 Дж / г / ° C

Наконец, мы будем использовать ранее сообщенные значения ΔH плавления (333 Дж / г) и ΔH испарения (2,23 кДж / г).

Раздел 1 : Изменение температуры твердой воды (льда) с -20,0 ° C до 0,0 ° C.

Используйте Q 1 = m • C • ΔT

, где m = 50,0 г, C = 2,00 Дж / г / ° C, T начальная = -200 ° C и T конечная = 0,0 ° C

Q 1 = m • C • ΔT = (50.0 г) • (2,00 Дж / г / ° C) • (0,0 ° C — -20,0 ° C)
Q 1 = 2,00 x10 3 Дж = 2,00 кДж

Раздел 2 : Таяние льда при 0,0 ° C.

Используйте Q 2 = m • ΔH сварка

, где m = 50,0 г и ΔH плавления = 333 Дж / г

Q 2 = m • ΔH плавление = (50,0 г) • (333 Дж / г)
Q 2 = 1,665 x10 4 Дж = 16.65 кДж
Q 2 = 16,7 кДж (округлено до 3 значащих цифр)

Раздел 3 : Изменение температуры жидкой воды с 0,0 ° C на 100,0 ° C.

Используйте Q 3 = m • C • ΔT

, где m = 50,0 г, C = 4,18 Дж / г / ° C, T начальная = 0,0 ° C и T конечная = 100,0 ° C

Q 3 = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (100,0 ° C — 0,0 ° C)
Q 3 = 2.09 x10 4 Дж = 20,9 кДж

Раздел 4 : Кипячение воды при 100,0 ° C.

Используйте Q 4 = m • ΔH испарение

, где m = 50,0 г и ΔH испарение = 2,23 кДж / г

Q 4 = m • ΔH испарение = (50,0 г) • (2,23 кДж / г)
Q 4 = 111,5 кДж
Q 4 = 112 кДж (округлено до 3 значащих цифр)

Раздел 5 : Изменение температуры жидкой воды со 100.От 0 ° C до 120,0 ° C.

Используйте Q 5 = m • C • ΔT

, где m = 50,0 г, C = 2,01 Дж / г / ° C, T начальная = 100,0 ° C и T конечная = 120,0 ° C

Q 5 = m • C • ΔT = (50,0 г) • (2,01 Дж / г / ° C) • (120,0 ° C — 100,0 ° C)
Q 5 = 2,01 x10 3 J = 2,01 кДж

Общее количество тепла, необходимое для превращения твердой воды (льда) при -20 ° C в газообразную воду при 120 ° C, является суммой значений Q для каждого участка графика.То есть

Q итого = Q 1 + Q 2 + Q 3 + Q 4 + Q 5

Суммирование этих пяти значений Q и округление до нужного количества значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.

В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:

  • Первое: длинная задача была разделена на части, каждая из которых представляет собой одну из пяти частей графика.Поскольку было вычислено пять значений Q, они были обозначены как Q 1 , Q 2 и т. Д. Этот уровень организации требуется в многоступенчатой ​​задаче, такой как эта.
  • Секунда: Внимание было уделено знаку +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как конечное значение величины за вычетом начального значения этой величины.
  • Третий: На протяжении всей задачи внимание уделялось подразделениям.Единицы Q будут либо в Джоулях, либо в килоджоулях, в зависимости от того, какие количества умножаются. Отсутствие внимания к устройствам — частая причина сбоев в подобных проблемах.
  • Четвертый: На протяжении всей задачи внимание уделялось значащим цифрам. Хотя это никогда не должно становиться основным акцентом какой-либо проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.

Здесь, на этой странице, мы узнали, как рассчитать количество тепла, задействованного в любом процессе нагрева / охлаждения и в любом процессе изменения состояния.Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице Урока 2, посвященной калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.

Проверьте свое понимание

1. Вода имеет необычно высокую удельную теплоемкость. Какое из следующих утверждений логически следует из этого факта?

а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что она хорошо проводит тепло.
б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
c. По сравнению с другими веществами, образец воды требует значительного количества тепла, чтобы немного изменить ее температуру.

2. Объясните, почему в больших водоемах, таких как озеро Мичиган, может быть довольно холодно в начале июля, несмотря на то, что температура наружного воздуха около или выше 90 ° F (32 ° C).

3. В таблице ниже описан термический процесс для различных объектов (выделен красным жирным шрифтом). Для каждого описания укажите, набирается или теряется тепло объектом, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.

Процесс

Получено или потеряно тепло?

Эндо- или экзотермический?

Вопрос: + или -?

а.

Кубик льда помещают в стакан с лимонадом комнатной температуры, чтобы охладить напиток.

г.

Холодный стакан лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32 ° F.

г.

Конфорки на электроплите выключаются и постепенно остывают до комнатной температуры.

г.

Учитель вынимает из термоса большой кусок сухого льда и опускает его в воду. Сухой лед возгоняется, образуя газообразный диоксид углерода.

e.

Водяной пар в увлажненном воздухе ударяется о окно и превращается в каплю росы (каплю жидкой воды).

4. Образец металлического цинка массой 11,98 грамма помещают в баню с горячей водой и нагревают до 78,4 ° C. Затем его удаляют и помещают в чашку из пенополистирола, содержащую 50,0 мл воды комнатной температуры (T = 27,0 ° C; плотность = 1,00 г / мл). Вода прогревается до температуры 28.1 ° С. Определите удельную теплоемкость цинка.

5. Джейк достает из туалета банку с газировкой и выливает ее в чашку со льдом. Определите количество тепла, теряемого содой комнатной температуры при плавлении 61,9 г льда (ΔH fusion = 333 Дж / г).

6. Теплота сублимации (ΔH сублимация ) сухого льда (твердый диоксид углерода) составляет 570 Дж / г. Определите количество тепла, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)

7. Определите количество тепла, необходимое для повышения температуры 3,82-граммового образца твердого пара-дихлорбензола с 24 ° C до жидкого состояния при 75 ° C. Пара-дихлорбензол имеет температуру плавления 54 ° C, теплоту плавления 124 Дж / г и удельную теплоемкость 1,01 Дж / г / ° C (твердое состояние) и 1,19 Дж / г / ° C (жидкое состояние).

Попадание в горячую воду: Практическое руководство по системам водяного отопления

Одним из положительных результатов недавнего энергетического кризиса стало развитие и совершенствование технологий использования альтернативных форм энергии.Нигде эти усилия не были более очевидными, чем рост использования древесины в качестве источника топлива. Многие односемейные дома, построенные в последние годы, предусматривают хотя бы частичное отопление дровами. Некоторые коммерческие, промышленные и сельскохозяйственные предприятия, которым требуется большое количество тепла, также либо перешли на древесину, либо рассмотрели ее.

Одним из наиболее удобных, эффективных и рентабельных способов, с помощью которых жилые, сельскохозяйственные и небольшие коммерческие пользователи могут пользоваться преимуществами энергии на базе древесины, является использование системы водяного отопления (часто называемой гидронной).Системы горячего водоснабжения, работающие на древесном топливе, особенно подходят для малых и средних предприятий. Основным преимуществом этих систем является то, что они обеспечивают постоянный нагрев при относительно нечастой загрузке. Они также безопасны и могут сжигать недорогое древесное топливо во многих различных формах. Хотя этой технологии как минимум 200 лет, сегодня стоит подумать о ней.

Расширение биологической и сельскохозяйственной инженерии в Государственном университете Северной Каролины спроектировало и протестировало ряд гидравлических систем различных размеров за последние годы.Планы для этих систем доступны за небольшую плату. В настоящее время в Северной Каролине действует несколько тысяч жилых систем горячего водоснабжения, работающих на древесине. Кроме того, около 60 единиц используются для сушки табака и около 300 — для обогрева теплиц. Хотя многие из этих систем были построены на основе проверенных планов, некоторые из них — нет. Когда в системе возникают проблемы, это часто происходит из-за того, что некоторые важные конструктивные или эксплуатационные требования были упущены из виду.

Для эффективной работы важно понимать и соблюдать определенные основные правила.Эта публикация предоставляет оператору системы водяного отопления важную базовую информацию об этом типе системы и ее работе. В первых двух разделах описывается система горячего водоснабжения и ее части, объясняются функции каждой части и даются некоторые простые расчеты конструкции для тех, кто хочет построить свою собственную систему. Третий раздел поможет читателю развить понимание древесного топлива, а четвертый описывает и объясняет экономику систем горячего водоснабжения.

В системе водяного отопления вода используется для хранения тепловой энергии и передачи ее от горящего топлива к месту, где будет использоваться тепло.Все системы горячего водоснабжения (гидроники) состоят из пяти основных частей:

  • Топка , камера, в которой сжигается топливо;
  • Резервуар для воды , в котором тепло поглощается и хранится;
  • A насосно-трубопроводная система для транспортировки нагретой воды;
  • Теплообменник для отвода тепла там, где оно необходимо;
  • Система управления для управления скоростью использования тепла.

При проектировании водонагревателя на дровах важны три фактора:

  1. Сжигание . Система должна быть спроектирована так, чтобы топливо сгорало максимально полно.
  2. Теплообмен . Конструкция должна позволять как можно большему количеству выделяемого тепла попадать в воду.
  3. Сохранение тепла . Система должна позволять как можно меньше тепла уходить неиспользованным.

Самая важная часть любой системы горячего водоснабжения — топка или камера сгорания.Если он неправильного размера или плохо спроектирован, производительность всей системы пострадает. Самая частая проблема домашних систем горячего водоснабжения — это плохо спроектированная топка. К сожалению, это также одна из самых сложных проблем, которую можно решить без изменения конструкции и восстановления топки.

Как горит древесина

Чтобы оценить необходимость правильно сконструированной топки, необходимо понимать, как горит дрова. Горение (горение) — это процесс, при котором кислород химически соединяется с топливом, выделяя тепло.Тепло также необходимо для запуска процесса. Однако, однажды начавшись, реакция может быть самоподдерживающейся.

Большинство людей знают, что для сжигания необходимы топливо и кислород. Однако многие не осознают, что тепло также необходимо. Многие проблемы в системах водяного отопления связаны с недостаточным количеством тепла в камере сгорания.

Два основных компонента древесины — это целлюлоза и лигнин. Эти два химических вещества состоят в основном из углерода, водорода и кислорода.При повышении температуры древесины некоторые летучие вещества, содержащиеся в ней — вода, воск и масла — начинают выкипать. При температуре около 540 ° F тепловая энергия приведет к разрыву атомных связей в некоторых молекулах древесины. Когда тепловая энергия разрывает связи, которые удерживают вместе атомы, составляющие лигнин или целлюлозу, образуются новые соединения — соединения, которых изначально не было в древесине. Этот процесс известен как пиролиз. Эти новые соединения могут быть газами, такими как водород, окись углерода, двуокись углерода и метан, или они могут быть жидкостями и полутвердыми веществами, такими как смолы, пиролитовые кислоты и креозот.Эти жидкости в виде мелких капель и полутвердых частиц вместе с водяным паром образуют дым. Дым, который выходит из трубы (дымохода) несгоревшим, является потраченным топливом.

Поскольку температура продолжает расти, производство пиролитических соединений резко возрастает. При температуре от 700 до 1100 ° F (в зависимости от присутствующих пропорций) кислород соединяется с газами и смолами с выделением тепла. Когда это происходит, происходит самоподдерживающееся горение.

В какой-то момент во время горения куска дерева вся смола и газы улетучатся.Остается в основном древесный уголь. В обиходе мы говорим, что древесина сгорела дотла. Эти угли медленно горят снаружи и почти без огня. Количество угля или древесного угля, которое остается после того, как другие части древесины выкипят, зависит в первую очередь от породы древесины, а также от того, как быстро и при какой температуре она была сожжена. Как правило, чем быстрее и горячее сгорает кусок дерева, тем меньше древесного угля остается в виде углей.

Лучше всего быстро обжечь дрова, чтобы получить от них как можно больше тепла.Медленный дымный огонь может тратить до трети тепловой энергии топлива. Для эффективного горения огонь должен получать достаточно кислорода. Высокая дымовая труба, механический вытяжной вентилятор или и то, и другое обычно используются для обеспечения достаточной тяги (потока воздуха в топку).

Однако существуют пределы того, как быстро можно заставить дерево гореть. Если воздух нагнетается в камеру сгорания слишком быстро, он имеет тенденцию «задуть» огонь. Результат почти такой же, как слишком мало воздуха.

Попадание слишком большого количества воздуха в камеру сгорания также может привести к вздутию воздуха.Дыхание на самом деле представляет собой серию взрывов, возникающих в результате резкого смешивания воздуха и древесных газов. Чаще всего это происходит, когда свежее топливо добавляется в слой очень горячих углей. Сильное тепло от углей может отогнать большие объемы горючих газов, которые периодически воспламеняются по мере поступления кислорода. Эти взрывы редко вызывают какие-либо повреждения системы, но возникающий в результате обратный огонь может вызвать ожоги и летящий пепел.

Многие соединения образуются при горении древесины. Только в дыме было идентифицировано более 160 различных видов.В наибольшем объеме выделяются окись углерода, метан, метанол и водород. Хотя эти соединения будут гореть при относительно низких температурах, большая часть оставшихся выделенных соединений, таких как дым и смола, не сгорит полностью, пока температура не достигнет более 1000 ° F. Таким образом, для полного сгорания необходима горячая топка.

В большинстве хорошо спроектированных систем горячего водоснабжения топка окружена водой. По этой причине эти системы иногда называют водяными плитами.«В этом типе агрегата стенки топки поглощают большую часть выделяемого тепла. Вода сохраняет стенки топки относительно прохладными, что приводит к хорошей теплопередаче, но не способствует хорошему сгоранию. В большинстве случаев необходимо изолировать стены и пол топку с огнеупорным кирпичом. огнеупорным кирпичом замедляет движение тепла от огня и тем самым повышает эффективность сгорания.

Обычный красный строительный кирпич, особенно с отверстиями, работает так же хорошо, как белый огнеупорный кирпич для облицовки топки.Хотя красный кирпич не столь эффективным, оно стоит около одной пятой столько, сколько белого огнеупорного кирпича.

Конструкция топки

На рис. 1 показано поперечное сечение типичного водонагревательного агрегата. Очень важно, чтобы камера сгорания с водяной рубашкой была достаточно большой. Он должен быть такого размера, чтобы он не только принимал заряд топлива, но и позволял полностью сгореть расширяющимся газам сгорания, прежде чем они потеряют слишком много тепла и перейдут в дымовые трубы.

Одна из наиболее распространенных проблем домашних систем горячего водоснабжения заключается в том, что камера сгорания слишком мала для нормального сгорания. В этом случае трудно разжечь огонь достаточно горячим; он имеет тенденцию курить, даже когда ему дают много воздуха. Если топка уже не слишком мала, добавив огнеупоры подкладки может помочь, потому что это сделает огнь гореть более горячее. Однако иногда единственным выходом является замена топки на более крупную.

Мощность системы горячего водоснабжения может быть описана двумя способами: с точки зрения ее мощности горелки или сгорания и с точки зрения ее способности аккумулировать тепло.(Последнее будет обсуждаться в другом разделе.) Мощность горелки системы определяется как наибольшее количество тепла, которое горелка может выделить из топлива за заданный период времени. Мощность горелки можно рассматривать как практический предел устойчивой мощности системы. Если вы продолжите увеличивать скорость подачи топлива в камеру сгорания, в конечном итоге будет достигнута точка, в которой топливо будет потребляться с той же скоростью, с которой оно добавляется. В этот момент горелка работает с номинальной мощностью.Более быстрое добавление топлива может фактически помешать процессу горения.

С практической точки зрения мощность горелки системы определяется размером топки и тем, насколько хорошо воздух может подаваться и распределяться по топливу. В общем, вы можете рассчитывать получить около 40 000 БТЕ в час на каждый квадратный фут площади решетки при условии, что глубина достаточна. Это означает, что вы можете ожидать около 800000 БТЕ в час от топки 5 футов в длину и 4 фута в ширину.

Между площадью колосниковой решетки и глубиной топки существует более чем случайная зависимость.Топка должна быть максимально глубокой. Большая глубина позволяет большему перемещению пламени и лучшему перемешиванию поднимающихся горячих газов для улучшения сгорания. В общем, глубина должна быть равна или больше наименьшего размера решетки. Например, если размер решетки составляет 5 на 8 футов, глубина топки должна быть не менее 5 футов. В таблице 1 показано предполагаемое соотношение между объемом топки и емкостью системы. Размеры не указаны, потому что размер и форма резервуара для хранения воды и свободное пространство, необходимое для пожарных труб, ограничивают глубину топки.Важно помнить, что высокие тонкие топки лучше, чем короткие толстые.


Таблица 1. Соотношение между производительностью системы и объемом камеры сгорания.
Производительность системы (БТЕ / ч) Объем камеры сгорания (кубические футы)
50 000 2
100 000 5
200 000 9
300 000 27
400 000 40
500 000 75
750 000 100
1 000 000 200
2 000 000 400
3 000 000 500

Выбор вытяжного вентилятора

Практические ограничения размеров топки и конструкции дымовой трубы обычно требуют создания тяги с помощью вентилятора.Были использованы следующие аранжировки и их комбинации:

  • Вентилятор для подачи свежего воздуха под решетку;
  • Баллончик для нагнетания свежего воздуха в топку над решеткой;
  • Вытяжной вентилятор для подачи свежего воздуха в топку и через систему.

Использование вентиляторов для подачи воздуха в камеру сгорания имеет то преимущество, что вентиляторы остаются чистыми и охлаждаются воздухом, который они перемещают. Недостатком является то, что дым и искры могут выходить из любой трещины в топке, потому что давление внутри топки выше, чем снаружи.Если используется вытяжной вентилятор, любые утечки происходят внутрь. Недостатком является то, что тепло и копоть в дымовой трубе сильно воздействуют на систему вентиляторов, хотя существуют вентиляторы, специально разработанные для этой цели.

Скорострельность зависит от тяги. Вентилятор или вентиляторы с принудительной тягой должны подавать достаточно кислорода для максимальной ожидаемой скорости горения, но не должны обеспечивать больше этого количества. Слишком много воздуха охладит огонь и выбросит пепел в дымовые трубы. Например, чтобы определить размер стекового вентилятора, предположим, что максимальная мощность системы составляет 2 миллиона БТЕ в час.

2000000 БТЕ / час ÷ 6680 БТЕ / фунт древесины = 300 фунтов древесины / час

Для сжигания 1 фунта дров требуется около 6 фунтов воздуха. Следовательно, потребность в воздухе составляет:

.

6 фунтов воздуха / фунт древесины x 300 фунтов древесины / час = 1800 фунтов воздуха / час

Один фунт воздуха эквивалентен примерно 13,5 кубическим футам. Таким образом, необходимый объем воздуха составляет:

.

1800 фунтов воздуха / час x 13,5 кубических футов / фунт воздуха = 24 300 кубических футов воздуха / час или 405 кубических футов / мин (куб. Футов / мин)

Обычно для эффективного сгорания требуется около 50 процентов избыточного воздуха.Следовательно, требуемый объем:

405 куб. Футов в минуту x 1,5 = 608 куб. Футов в минуту

Поскольку мы определяем объем воздуха и газов, перемещаемых вытяжным вентилятором, мы должны учитывать добавление продуктов сгорания и влажности древесины к дымовым газам. Для древесины с влажностью 20 процентов, влажная основа (w.b.), отношение объема дымовой трубы к входящему воздуху составляет 1,16 моль дымовых газов на моль свежего воздуха.

Это соотношение рассчитано исходя из 100-процентного сгорания. Таким образом, объем выходящих продуктов сгорания составляет:

608 кубических футов в минуту входящего воздуха x 1.16 = 705 куб. Футов в минуту

Наконец, объем необходимо отрегулировать в соответствии с температурой. Закон Чарльза гласит, что объем газа линейно увеличивается с его температурой. Чтобы использовать закон Чарльза, температуры по Фаренгейту должны быть преобразованы в температуры по шкале Ренкина (R), что достигается добавлением 460 ° к температуре по Фаренгейту.

При температуре входящего воздуха 510 ° R (50 ° F) и температуре дымовой трубы 760 ° R (300 ° F) скорректированный объем дымового газа составляет:

760/510 x 705 кубических футов в минуту = 1050 кубических футов в минуту

Таким образом, 608 кубических футов в минуту входящего воздуха соответствует общему объему 1050 кубических футов в минуту, выходящему через дымовую трубу.Подойдет типичный вентилятор мощностью 1100 кубических футов в минуту при статическом давлении воды 1 дюйм. Статического давления воды в 1 дюйм будет более чем достаточно для компенсации газового трения в системе.

Вышеприведенные расчеты можно применить к системам различного размера. Размеры вентиляторов указаны в таблице 2 для различных систем.


Таблица 2. Размеры стековых вентиляторов для различных систем.
Производительность системы (БТЕ / ч) Размер вентилятора стека (куб. Фут / мин при 1 дюйм.давление воды)
50 000 40
100 000 75
200 000 140
300 000 180
400 000 240
500 000 300
750 000 425
1 000 000 550
2 000 000 1,100
3 000 000 1,650

Двери с водяным охлаждением

Одной из наиболее часто встречающихся проблем в системах водяного отопления является коробление дверок топки.Двери должны быть большими для удобной топки. Одна сторона подвержена сильному нагреву камеры сгорания, а другая часто окружена зимними температурами. Возникающие в результате сильные термические нагрузки могут деформировать двери. Хотя дверь, показанная на рис. 2, была сделана из стали 1 2 дюймов с существенным усилением, вскоре она так сильно покоробилась, что ее нельзя было закрыть.

Опыт показал, что эту проблему нельзя полностью устранить, хотя ее можно существенно уменьшить, охладив двери водой.Водяное охлаждение не только предотвращает коробление, но и позволяет рекуперировать больше тепла.

Двери с водяным охлаждением обычно имеют внутреннюю и внешнюю металлические поверхности, разделенные 2- или 3-дюймовыми полостями, через которые может циркулировать вода. Часть мощности циркуляционного насоса воды отводится в полость двери. В полость обычно устанавливаются перегородки для обеспечения хорошей циркуляции и равномерного охлаждения.

Решетка

Для максимального удобства и эффективности в нижней части топки необходимо предусмотреть решетку.Идеальная решетка позволяет золе просачиваться сквозь нее, но удерживает большую часть древесины и древесного угля и обеспечивает непрерывный поток воздуха через всю площадь решетки без периодического перемешивания или встряхивания. На каждые 1000 БТЕ номинальной мощности необходимо не менее 5 квадратных дюймов площади решетки. Например, для системы мощностью 200000 БТЕ / час потребуется:

200 x 5 = 1000 квадратных дюймов

Одна тысяча квадратных дюймов равна примерно 7 квадратным футам. Следовательно, решетки шириной 2 фута и длиной 3 1 2 футов будет достаточно для системы с номинальной производительностью 200 000 БТЕ / час.

Создать удовлетворительную решетку сложно. Лучше всего подходят чугунные решетки, но их трудно найти, они дороги и имеют тенденцию со временем треснуть и выгореть. Пластина из мягкой стали толщиной от 1 2 от дюймов до 1 дюйма будет деформироваться при нагревании, если снизу не будет хорошо поддерживаться. Однако решетчатые опоры затрудняют удаление золы. Использованные железнодорожные рельсы, перевернутые вверх дном, с умеренным успехом использовались для формирования решеток. Стандартные 80-фунтовые рельсы, расположенные на расстоянии 1 2 друг от друга на расстоянии 1 дюйма, будут охватывать 6 футов без поддержки.Рельсы изготовлены из марганцевой легированной стали, их трудно сваривать и резать. Однако они умеренно устойчивы к высокотемпературной эрозии и относительно недороги, если их покупать на свалке металлолома.

Накопление древесного угля во время непрерывного обжига может привести к закупорке решеток и нарушению циркуляции воздуха. Установка вентилятора высокого давления под решеткой гарантирует поддержание минимального потока воздуха и ускоряет сжигание древесного угля. Остальной воздух для горения может подаваться через вентиляционное отверстие или дополнительный вентилятор над решеткой.

Рис. 1. Типовая система водяного отопления.

Рисунок 2.Двери должны иметь водяное охлаждение, чтобы они не коробились от сильного жара.

Самая заметная часть системы горячего водоснабжения — это бак для воды. Стандартные резервуары, подходящие для систем водяного отопления, доступны в различных размерах, объемах и толщинах стенок.Подземные резервуары имеют более толстые стенки, чем надземные, что делает их намного лучше для сварки. Если у вас есть выбор, лучше использовать короткий резервуар большого диаметра, чем длинный и тонкий, потому что более короткий резервуар имеет меньшую площадь поверхности, что снижает потери тепла и стоимость изоляции. В таблице 3 приведены размеры и вместимость широкого диапазона стандартных резервуаров для хранения нефти.


Таблица 3. Типоразмеры металлических резервуаров для хранения.
Емкость (галлонов) Диаметр Длина
500 48 из 64 в
560 42 из 92 из
1 000 49 1 2 дюйм 10 футов
2 000 64 в 12 футов
4 000 64 в 24 фута
6 000 8 футов 16 футов 1 дюйм
8,000 8 футов 21 фут 4 дюйма
10 000 8 футов
10 1 2 футов
26 футов 1 дюйм
15 футов 8 дюймов
12 000 8 футов
10 1 2 футов
31 фут 11 дюймов
18 футов 7 дюймов
15 000 8 футов
10 1 2 футов
39 футов 11 дюймов
23 фута 4 дюйма
20 000 10 1 2 футов 31 фут
25 000 10 1 2 футов 38 футов 9 дюймов
30 000 10 1 2 футов 46 футов 6 дюймов

Хотя лучше всего использовать новый резервуар, многие успешные системы были созданы с использованными резервуарами.Резервуары для хранения отработанного масла часто можно получить просто по запросу. Если вы решили попробовать использованный резервуар, внимательно осмотрите его на предмет дырок или тонких пятен. Также узнайте, какая жидкость хранилась в резервуаре. Внимание! Запрещается сваривать или резать резервуар, который, как вы подозреваете, содержит легковоспламеняющиеся материалы, если он не будет тщательно очищен и вентилирован. Один из методов удаления остатков масла или бензина из большого бака — смешать примерно 2 фунта моющего средства на тысячу галлонов емкости с достаточным количеством воды, чтобы растворить его, и вылить этот раствор в бак.Затем полностью наполните резервуар водой и дайте ему постоять несколько дней, прежде чем слить его и приступить к работе.

Теплоемкость

Как упоминалось в предыдущем разделе, одним из показателей емкости системы является ее способность аккумулировать тепло. Вода — одно из наименее дорогих и наиболее легко перемещаемых и контролируемых веществ. Это также один из лучших известных носителей тепла. Вода может хранить в четыре или пять раз больше тепла, чем камень, в десять раз больше, чем большинство металлов, и примерно в четыре раза больше, чем воздух на единицу веса.Его единственный недостаток в том, что он не может сохранять тепло при температуре выше 212 ° F, если он не находится под давлением. Это ограничивает его пригодность для высокотемпературных применений. Однако для систем отопления помещений в теплицах и других сельскохозяйственных, коммерческих или жилых помещениях это ограничение обычно не является проблемой.

По определению, одна британская тепловая единица (БТЕ) ​​- это количество тепла, необходимое для повышения температуры фунта воды на 1 ° F. Галлон воды весит примерно 8.3 фунта, поэтому тепловая энергия, необходимая для повышения температуры галлона на 100 ° F, составляет:

8,3 фунта x 100 ° F = 830 БТЕ

Для сравнения, для повышения температуры 8,3 фунта гравия на 100 ° F потребуется всего около 166 БТЕ.

Как указывалось ранее, воду нельзя нагревать до температуры выше 212 ° F при атмосферном давлении. Эта температура определяет верхний предел количества тепла, которое может хранить безнапорная вода. Нижний предел устанавливается желаемой температурой нагрузки.Например, если в теплице должна поддерживаться температура 65 ° F, то эта температура является нижним пределом. Разница между верхним и нижним пределом,

212 ° F — 65 ° F = 147 ° F

указывает, сколько тепла может удержать данный объем воды.

На самом деле, снижать температуру хранения до нижнего предела непрактично. Скорость передачи тепла нагрузке (например, от радиаторов к воздуху внутри теплицы) значительно снижается, поскольку температура нагретой поступающей воды приближается к температуре воздуха нагрузки.По этой причине желательно поддерживать нижнюю температуру хранения воды, по крайней мере, на 35 ° F выше желаемой температуры загрузки. Следовательно, в предыдущем примере нижний предел температуры будет 100 ° F, а разница температур будет не 147 ° F, а

.

212 ° F — (65 ° F + 35 ° F) = 112 ° F

Следовательно, диапазон температур хранения воды ограничен 112 ° F. Используя эту информацию в качестве руководства, теперь мы можем определить, какой объем памяти необходим.

Если заданная тепловая нагрузка определена как 200000 БТЕ в час и желательно иметь 6 часов нагрева после тушения пожара, количество воды должно быть достаточным для хранения:

200000 БТЕ / час x 6 часов = 1200000 БТЕ

Для подъема одного фунта воды на 1 ° F требуется 1 БТЕ.В каждом фунте воды может храниться только 112 БТЕ. Следовательно, необходимое количество воды составляет:

.

1,200,000 БТЕ ÷ 112 БТЕ / фунт = 10714 фунтов

Поскольку вода весит 8,3 фунта на галлон, 10 714 фунтов воды равны 1291 галлону.

На практике максимальная температура воды редко превышает 200 ° F; следовательно, требуется емкость, немного превышающая 1291 галлон.

Эти расчеты предполагают, что тепло не теряется из резервуара или из труб, по которым вода подается к загрузке и от нее.Эти потери могут быть значительными в зависимости от того, насколько хорошо изолирована труба, расстояния от резервуара до груза и температуры наружного воздуха.

Очень хорошая идея — установить термометр на выпускной линии резервуара. Это даст точную индикацию температуры воды внутри резервуара. Падение температуры воды более чем на 20 ° F в час является хорошим признаком того, что резервуар для воды слишком мал, поскольку цель системы горячего водоснабжения — обеспечить постоянный источник тепла без необходимости постоянно разжигать огонь.

Также рекомендуется установить термометр в трубопроводах с обеих сторон нагрузки — например, на впускном и выпускном трубопроводах радиатора или ряда радиаторов. Это позволяет определить не только, сколько энергии теряется между баком и грузом, но и насколько эффективно радиаторы извлекают тепло из воды.

Для оптимальной конструкции системы емкость накопителя должна основываться на максимальной номинальной мощности горелки, требуемой тепловой нагрузке и максимальном промежутке времени между загрузками топлива.Следующее обсуждение показывает, как взаимодействуют эти три фактора.

Предположим, как в приведенном выше примере, что требуемая средняя тепловая нагрузка составляет 200 000 БТЕ в час. Это означает, что в течение обычного часа работы требуется 200 000 БТЕ тепла. Вероятно, что посреди очень холодной ночи количество необходимого тепла превысит это количество. Но для того, чтобы иметь достаточно тепла, мощность горелки должна как минимум равняться средней нагрузке плюс потери. С практической точки зрения желательно, чтобы горелка была рассчитана на 1,5–2-кратную среднюю тепловую нагрузку.Горелка большего размера может производить тепло для хранения, а также для немедленного использования в периоды средней нагрузки.

Помимо энергии, хранящейся в горячей воде (накопительный бак), в системе также можно хранить тепловую энергию в виде несгоревшей древесины. Это называется хранилищем топки. В ожидании очень холодной ночи оператор теплицы может топить систему в течение дня, чтобы постепенно поднять температуру воды примерно до 212 ° F. Несмотря на то, что вода уже удерживает количество тепла, близкое к максимальному, оператор может снова заполнить топку непосредственно перед тем, как уйти на ночь.Это дополнительное топливо добавляет энергии системе. Горящее топливо может просто заменить уходящее тепло и, таким образом, поддерживать высокую температуру воды. Однако, если дополнительное топливо слишком быстро добавляет слишком много тепла, вода в баке закипит, и энергия будет потрачена впустую в виде пара.

Маловероятно, что система горячего водоснабжения во время реальной эксплуатации будет подвергаться очень большим колебаниям нагрузки. Другими словами, не требуется производить максимальную производительность один час и никакой в ​​последующие.Скорее, постепенное увеличение и уменьшение обычно происходит в течение дня по мере изменения наружной температуры и многих других факторов. С другой стороны, тепло, подаваемое в систему от огня, обычно бывает довольно спорадическим, в зависимости от того, сколько и как часто добавляется топливо. Ценность системы горячего водоснабжения частично основана на ее способности быстро накапливать тепловую энергию, но медленно выделять ее с контролируемой скоростью.

Если горелка вырабатывает больше тепла, чем используется системой, дополнительное тепло будет сохраняться при условии, что емкость хранения не была превышена.При превышении емкости вода закипает. Когда это происходит, избыточное тепло уходит из системы в виде пара. Энергия, необходимая для кипячения воды, просто тратится зря. Частое кипение в системе горячего водоснабжения указывает на то, что горелка слишком велика, или она слишком часто зажигается, или что емкость аккумулирования тепла в системе слишком мала.

Если емкость аккумулирования тепла недостаточна, одно решение — добавить еще один резервуар. Тандемный резервуар обычно располагается как можно ближе к основному резервуару и соединяется впускной и выпускной трубой и насосом (Рисунок 3).Таким образом, емкость хранилища может быть легко увеличена без нарушения работы остальной системы. Между двумя баками всегда необходимо непрерывно перекачивать воду, чтобы тепло распределялось равномерно. Это можно сделать, добавив дополнительный насос или используя часть потока от существующего насоса, если он имеет избыточную производительность.

Системы горячего водоснабжения не паровые; то есть в системе никогда не бывает другого давления, кроме давления, создаваемого насосами. Из бака для горячей воды необходимо удалить воздух, чтобы предотвратить повышение давления, когда вода нагревается и расширяется или превращается в пар.Невентилируемый резервуар для хранения чрезвычайно опасен . В верхней части бака требуется как минимум два вентиляционных отверстия. Более того, люк, который обычно вырезается в верхней части резервуара во время строительства, можно оставить открытым, но прикрыть листом листового металла.

Изоляция

Необходимо изолировать бак и все трубы, чтобы предотвратить утечку тепла. Для наружных резервуаров подходит полиуретановая изоляция, напыляемая напылением, особенно если она окрашена и защищена от прямого воздействия огня и солнечных лучей.Покрытие толщиной 1 дюйм, обеспечивающее степень изоляции R-7, стоит около 1 доллара за квадратный фут. Например, для резервуара емкостью 2000 галлонов диаметром 64 дюйма и длиной 12 футов изоляция будет стоить приблизительно 250 долларов. В таблице 4 приведены расчетные значения теплоизоляции резервуаров различной толщины из полиуретана.


Таблица 4. Эффективность изоляции трех толщин на большом резервуаре для горячей воды.
Толщина изоляции (дюймы) Значение «R» Потери тепла (БТЕ / ч) 1 Ежемесячная стоимость потерянной энергии 2 Стоимость изоляции 3
0.0 0,5 200 000 384,00 $ $ 0
0,5 4,0 25 000 48,00 500
1,0 7,5 13 300 25,54 1 000
2,0 14,5 6 900 13.25 2 000
Примечание. Данные в этой таблице основаны на емкости резервуара 15 000 галлонов и площади поверхности 1 000 квадратных футов.
1 Предполагается, что разница температур воды и окружающей среды составляет 100 ° F.
2 При условии, что древесина стоит 40 долларов за шнур.
3 Предполагается, что прикладная стоимость составляет 1 доллар США за квадратный фут на дюйм толщины.

Эта таблица показывает, что затраты на нанесение минимального количества изоляции можно легко оправдать за счет экономии затрат на электроэнергию.Однако дополнительные затраты на изоляцию толщиной более 1 2 дюймов трудно оправдать.

Одна из альтернатив — разместить систему под односкатной крышей, где ее можно изолировать относительно недорогими войлоками из стекловолокна. Стекловолокно, которое может иметь основу из алюминиевой фольги, может удерживаться на месте проволочной сеткой с крупными ячейками. Стоимость навеса, изоляции, пленки, провода и рабочей силы может быть больше, чем стоимость напыляемой полиуретановой изоляции, но этот тип изоляции, вероятно, прослужит намного дольше и даст лучшее значение R.

Защита от ржавчины

Рекомендуется использовать какие-либо меры по предотвращению ржавчины для защиты внутренней части резервуара и труб от коррозии. Доступен ряд коммерческих химикатов, предназначенных в основном для использования в высокотемпературных котлах. Некоторые из них были бы довольно дорогими в количестве, необходимом для защиты системы горячего водоснабжения среднего размера.

Один метод, который был признан подходящим для систем горячего водоснабжения, — это добавление некоторых относительно недорогих химикатов для повышения pH воды.Среди них карбонат калия, карбонат натрия (стиральная сода) и гексаметафосфат натрия (Calgon). Эти химические вещества предотвращают коррозию, покрывая металлические стенки систем. Из упомянутых выше химикатов лучше всего работает Калгон. Его можно купить в большинстве продуктовых магазинов. Используйте 5 фунтов на каждые 1000 галлонов воды. В нормальных условиях ни один из этих химикатов не разлагается и, следовательно, остается активным в системе в течение длительного времени.

Пожарные трубы

Хотя некоторое количество тепла проходит к воде через стенки топки, основной путь тепла от огня к воде проходит через дымовые трубы.Большинство систем спроектировано таким образом, что горячие газы, выделяемые при пожаре, проходят через серию пожарных труб, которые проходят от одного конца резервуара для хранения к другому. Во многих системах газы проходят через резервуар более одного раза.

Очень важно, чтобы количество и размер трубок были достаточными, чтобы большая часть тепла передавалась от горячих газов воде до выхода газов. Как показывает практика, на каждые 2000 БТЕ номинальной мощности требуется около 1 квадратного фута площади теплообмена.Например, если система рассчитана на производство 200 000 БТЕ в час, потребуется около 100 квадратных футов площади теплообмена. Эта область может включать охлаждаемую водой поверхность топки, а также сами дымовые трубы. Обе эти области часто называют поверхностью очага.

Наружный диаметр трубок используется для расчета площади. В таблице 5 перечислены несколько часто используемых размеров стандартных труб с указанием их фактического внешнего диаметра и количества ходовых футов, необходимых для получения 1 квадратного фута площади поверхности.


Таблица 5. Линейные футы на квадратный фут площади поверхности для обычных стальных труб.
Номинальный размер трубы (дюймы) Внешний диаметр (дюймы) Линейных футов на квадратный фут внешней площади
1/2 0,840 4,55
3/4 1.050 3.64
1 1,315 2,90
1 1/4 1,660 2,30
1 1/2 1.900 2,01
2 2,375 1,61
2 1/2 2,875 1,33
3 3.500 1,09
3 1/2 4.000 0,95
4 4.500 0,85
4 1/2 5.000 0,76
5 5,563 0,67
6 6,625 0,58

Правильный размер трубы зависит от ряда факторов.В примере системы с производительностью 200 000 БТЕ в час требуется 100 квадратных футов площади теплообмена. Из таблицы 1 рекомендуемый объем топки составляет 9 кубических футов. Подходящая топка с таким объемом должна быть 1 1 2 футов в длину, 2 фута в ширину и 3 фута в высоту. Площадь топки составляет 27 квадратных футов (включая дверь с водяным охлаждением). Таким образом, топка обеспечит 27 квадратных футов необходимых 100 квадратных футов. Остальные 73 квадратных фута должны обеспечивать пожарные трубы.

Чтобы найти длину трубы заданного диаметра, необходимую для обеспечения желаемой площади поверхности, умножьте числа в третьем столбце таблицы 5. Например, если вы выбрали 1 1 2 дюймов трубы, умножьте 73 погонных футов на 2,01:

73 фута x 2,01 фут / кв. Фут = 146,72 фута

Около 147 погонных футов 1 1 2 -дюймовой трубы требуется для получения 73 квадратных футов площади теплообмена. С другой стороны, если вы используете 3-дюймовую трубу, вам понадобится всего около 80 футов:

73 фута x 1.09 фут / кв фут = 79,73 фут

Какой размер лучше? Если рассматривать строго с точки зрения затрат, нет большой разницы между 147 футами трубы 1 1 2 дюймов и 80 футами трубы 3 дюйма. Однако сваривать большую трубу намного проще. Кроме того, время от времени необходимо будет очищать внутреннюю часть трубы от золы, сажи и других отложений. Очистить меньшую длину и большую трубу проще. Однако большее количество труб меньшего размера будет несколько более эффективным в передаче тепла.Опыт показал, что в целом лучше всего подходят трубы диаметром от 2 до 3 дюймов.

Отложения золы в дымовых трубах значительно снизят скорость теплопередачи. Хорошо иметь способ определить, насколько хорошо они работают. Один из лучших и наименее дорогих методов — разместить высокотемпературный термометр в точке, где газы покидают пожарные трубы и запускают дымовую трубу. Чем ближе температура воды, тем эффективнее отвод тепла от пожарных труб. Температура газа от 300 до 350 ° F указывает на эффективную теплопередачу.Температура газа более 450 ° F указывает на то, что площадь теплообмена слишком мала или на дымовые трубы нанесено покрытие.

Стратификация

Любопытное состояние иногда возникает в средних и больших системах. Несмотря на то, что топка постоянно топится, и видно, как вода кипит из верхней части резервуара, температура воды, забираемой из резервуара для распределения, составляет всего 170–180 ° F. Такая ситуация возникает в системах, где вход и выход находятся около дна резервуара и нет вспомогательного циркуляционного насоса, поддерживающего движение воды.Это состояние называется стратификацией и возникает, когда вода при разных температурах разделяется на отдельные слои, причем самая теплая вода остается наверху. Стратификация может происходить в любой системе, но обычно более выражена в крупных.

Плотность воды при 100 ° F примерно на 3,5 процента больше, чем при 200 ° F. Как и воздух, горячая вода поднимается, а холодная опускается. Чтобы предотвратить расслоение, воду необходимо поддерживать в движении. Один из способов — подсоединить возвратные трубы в верхней части бака над топкой (самая горячая часть системы) и забрать воду из нижней части бака с другого конца.Проблема с этим подходом заключается в том, что распределительные насосы могут не работать все время, и при выключении насосов может происходить расслоение.

Лучшее решение — установить постоянно работающий вспомогательный циркуляционный насос для перекачки воды из самой холодной части резервуара в самую горячую. Постоянное перемешивание воды предотвратит расслоение. Циркуляционный насос не обязательно должен быть большим, так как необходимо преодолеть очень небольшой напор. Он должен быть способен перекачивать от 0,2 до 0,5 производительности системы в час.Например, система на 2000 галлонов должна иметь насос, способный перекачивать от 400 до 1000 галлонов в час. Обычно достаточно электрического насоса 1 6 от до 1 2 .

Рис. 3. Дополнительный резервуар увеличит емкость хранения.

Трубопровод

Вода не только сохраняет тепло, но и передает тепло туда, где оно используется.Распределительный насос должен иметь подходящий размер для работы. Если насос слишком мал, он не будет перекачивать достаточно тепла к нагрузке. Если он слишком большой, это приведет к потере энергии. Подбор насоса — довольно сложный вопрос, поскольку он зависит от ряда взаимосвязанных факторов. К ним относятся размер груза, расстояние между баком и грузом, количество различных теплообменников в системе и размер используемой трубы. В таблице 6 приведены размеры труб для различных тепловых нагрузок. Эти скорости потока и размеры труб рассчитаны с учетом нормального падения температуры на 25 ° F при прохождении воды через теплообменник.


Таблица 6. Минимальные размеры труб для нагрузок на расстоянии 100 и 300 футов от резервуара.
Нагрузка (БТЕ / ч) Расход (галлон / мин) Диаметр стальной трубы (дюймы) 1
100 футов 300 футов
100 000 8 1 1/4 1 1/2
200 000 16 1 1/2 2
300 000 24 2 2 1/2
400 000 32 2 1/2 2 1/2
500 000 40 2 1/2 3
750 000 60 3 3
1 000 000 80 3 4
1 500 000 120 4 4
2 000 000 160 4 4
1 Для трубы из ХПВХ подходит следующий меньший размер

За исключением жилых помещений, большинство систем горячего водоснабжения поставляют тепло более чем в одно место.Например, несколько отдельных теплиц или помещений для выдержки могут потреблять тепло от одной и той же системы. Горячая вода подается к каждой нагрузке по большим магистральным распределительным и обратным линиям. Каждая нагрузка имеет свой собственный насос и подключена к основным линиям параллельно, что делает ее управляемой независимо (Рисунок 4). Каждое параллельное соединение должно иметь обратный клапан для предотвращения обратного потока, когда тепло не требуется.

Насосы

обычно оцениваются по количеству галлонов в минуту, которые они могут подавать при определенном напоре или общем сопротивлении.Это полное сопротивление является суммой сопротивлений каждой отдельной части системы, через которую вода проходит в своем контуре к насосу и от него. Сопротивление обычно выражается в количестве футов «головы», хотя с таким же успехом оно может быть выражено в фунтах на квадратный дюйм. Напор — это гипотетическая высота воды, против которой должен работать насос; чем больше голова, тем больше сопротивление.

По мере увеличения сопротивления расход уменьшается. Например, определенный насос может быть рассчитан на 50 галлонов в минуту на высоте 10 футов, но только 15 галлонов в минуту на высоте 30 футов.Один фут напора эквивалентен 0,43 фунта на квадратный дюйм (psi). При выборе насоса важно выбрать насос, рассчитанный на работу с горячей водой при температурах до максимально ожидаемых.

Во многих системах используются стандартные стальные трубы и резьбовые соединения. Они относительно недороги и подходят для горячего водоснабжения. В некоторых новых системах используются пластиковые трубы. Полиэтилен (черный пластик) и трубы из ПВХ не выдержат длительного использования горячей воды при умеренном давлении. Однако два типа пластиковых труб — ХПВХ и полибутилен — предназначены для горячего водоснабжения.ХПВХ — это жесткая пластиковая труба, похожая на ПВХ. Если используется труба из ХПВХ, все фитинги, такие как соединители, переходники и колена, также должны быть изготовлены из ХПВХ. Полибутиленовая труба также требует специальных соединителей, но она гибкая и с ней значительно легче работать. Однако он еще не доступен в размерах более 1 дюйма.

Изоляция труб

Для повышения эффективности важно, чтобы распределительные трубы как к нагрузке, так и от нее были изолированы. Количество тепла, которое может быть потеряно от длины трубы, является значительным и зависит от ряда факторов.К ним относятся температура воды, проходящей через трубу, температуру и движение воздуха, окружающего трубу, тип материала трубы, а также состояние поверхности и толщину стенки трубы. Неизолированная распределительная труба горячей воды может терять от нескольких сотен до нескольких тысяч БТЕ в час, в зависимости от условий и длины.

Если трубы будут прокладываться над землей, будет достаточно покрытия из стекловолокна, защищенного от дождя несколькими слоями устойчивой к солнечному свету пластиковой пленки.Любая изоляция, особенно стекловолокно, пропитанная водой, теряет почти все свои изоляционные свойства. Изоляция труб из пенопласта в виде разъемных трубок также хорошо работает, если она защищена от солнечных лучей.

Гораздо труднее изолировать трубу, когда она проложена под землей. просто закапывать трубу в землю без изоляции — очень плохая практика, потому что влажная холодная почва является очень хорошим проводником тепла. Большинство изоляционных материалов из пенопласта, таких как изоляционные материалы с разъемными трубками, изготавливаются из пенопласта с закрытыми порами, что означает, что он не пропитывается водой и, следовательно, сохраняет свои изоляционные свойства под землей.Если вам необходимо проложить трубу под землей, убедитесь, что земля остается как можно более сухой.

Напыляемая полиуретановая изоляция, обычно используемая на резервуарах, также может использоваться для изоляции подземных труб, поскольку она относится к типу с закрытыми ячейками. Чтобы использовать этот метод, вырывается траншея шириной от 4 до 6 дюймов и глубиной от 12 до 14 дюймов. Трубы опираются на 2 или 3 дюйма от дна, а в траншею распыляется от 4 до 5 дюймов изоляции, полностью окружая и покрывая трубы. После того, как утеплитель схватится, траншея засыпается грунтом.

Независимо от того, какой метод используется для изоляции трубы, важно не забыть изолировать обратную трубу, а также трубу, идущую к нагрузке. Несмотря на то, что большая часть тепла была удалена из возвратной воды, любая энергия, потерянная в трубе, должна быть восполнена. Для повышения температуры 1 фунта воды с 80 до 85 ° F требуется такое же количество тепла, как и для повышения температуры с 200 до 205 ° F.

Рисунок 4.Типовая схема мультизагрузочной системы.

Важной частью любой системы горячего водоснабжения является теплообменник или радиатор. Если его размер неверен или поток воздуха через него недостаточен, производительность системы может сильно пострадать.К счастью, теплообменники бывают разных размеров. Доступен широкий ассортимент коммерческих радиаторов, разработанных специально для систем горячего водоснабжения. Большинство из них могут работать при давлении воды от 50 до 60 фунтов на квадратный дюйм и имеют резьбовые фитинги для подключения к распределительной системе.

Очень подходящей альтернативой коммерческому радиатору является новый или подержанный автомобильный радиатор. Они доступны во многих различных размерах и могут быть куплены на большинстве складов и в магазинах запчастей.У многих дилеров есть новые радиаторы для старых автомобилей, которые они могут продать по сниженным ценам. Однако автомобильные радиаторы обычно не подходят для воды с давлением выше 15-20 фунтов на квадратный дюйм. Это ограничение не должно быть проблемой, если насос и распределительные трубы имеют правильный размер. Однако автомобильные радиаторы потребуют некоторых модификаций, включая закрытие заливных и переливных отверстий и изменение перехода от резинового шлангового фитинга к распределительной трубе.

Характеристики теплопередачи любого радиатора зависят от ряда факторов.Наиболее важными являются скорость потока и температура водяных и воздушных потоков. Как правило, чем больше разница температур между водой и воздухом, тем быстрее передается тепло. Кроме того, чем больше воды и воздуха проходит через радиатор, тем больше передается тепла. Также важны такие факторы, как конструкция радиатора, количество и расположение ребер, а также материал, из которого изготовлен радиатор. Например, в типичных условиях эксплуатации многие коммерческие теплообменники, разработанные специально для горячего водоснабжения, производят около 20 000 БТЕ в час на каждый квадратный фут площади поверхности.

Поскольку большинство радиаторов имеют схожие характеристики теплопередачи, решающим фактором при определении мощности является их физический размер. Испытания показали, что автомобильные радиаторы могут передавать от 16 000 до 20 000 БТЕ в час на квадратный фут поверхности лица (от 140 ° F воды до 70 ° F воздуха). Например, радиатор с размерами 1 1 2 футов шириной и высотой 2 фута имеет площадь 3 квадратных фута. Таким образом, он может передавать от 48 000 до 60 000 БТЕ в час.

Управление системой горячего водоснабжения довольно простое.Обычно они состоят из термостата, подключенного к реле, которое управляет отдельным насосом для каждой нагрузки. Электродвигатель вентилятора, который продувает воздух через радиатор, также может быть подключен к тому же реле, поскольку он не должен работать при выключенном насосе. Такое расположение позволяет управлять каждой нагрузкой независимо. В некоторых системах насосу разрешается работать непрерывно, а вентилятор управляется термостатом.

Для большинства крупных систем требуется вытяжной вентилятор, как описано ранее, для обеспечения надлежащего сгорания.Вытяжной вентилятор обычно работает всякий раз, когда в топке возникает пожар. Когда нет огня, он не должен работать, и его можно отключить вручную. Однако этот механизм не работает, когда систему топят, а затем оставляют без присмотра на длительное время, например, на ночь. Когда поле израсходовано, вентилятор продолжит работу, втягивая холодный воздух через пожарные трубы и, таким образом, охлаждая воду. Важно помнить, что дымовые трубы являются теплообменниками, и что тепло будет течь от горячей воды к охлаждающим трубам, а также наоборот.Одним из решений является установка термостата в дымовой трубе, чтобы останавливать вентилятор, когда температура падает примерно до 200 ° F, то есть когда в воду больше не поступает тепло. Может потребоваться ручное управление, чтобы разжечь огонь, когда система остыла.

Древесина — отличное топливо. По сравнению с большинством других видов топлива оно недорогое, его довольно легко хранить, его можно использовать в различных формах и размерах, и оно широко распространено в Северной Каролине.По оценкам, в этом штате в качестве топлива доступно более 14 миллионов тонн древесины в год.

Древесина, хотя и является хорошим топливом, имеет недостатки. Он содержит меньше энергии на фунт, чем большинство других видов топлива. Количество полезной энергии в образце древесины может широко варьироваться в зависимости от содержания влаги и породы.

Растущее дерево обычно наполовину состоит из воды. Когда дерево спиливается, древесина начинает терять влагу в окружающий воздух. Древесина, которая была свежесрезана и содержит высокий процент влаги, часто называется древесиной зеленая .После того, как древесина высохла в течение определенного периода времени (обычно несколько месяцев или более, ее называют выдержанной или сухой древесиной. По мере того, как древесина теряет влагу, ее влажность постепенно приближается к содержанию влаги от 12 до 15 процентов. Это значение называется равновесное содержание влаги (EMC). Фактическое процентное содержание определяется долгосрочным усреднением температуры и относительной влажности воздуха, окружающего древесину. Хотя было бы желательно, но нецелесообразно удалять всю воду из дрова.

Влажность топливной древесины обычно выражается в процентах от общей сырой массы. Например, если определенный кусок дерева весит 7 фунтов 6 унций (118 унций), но после высыхания кости весит всего 5 фунтов 4 унции (84 унции), исходное содержание влаги в древесине выражается как:

118-84 = 34 унции воды

34 ÷ 118 = 0,288 или 28,8 процента

Это означает, что вода составляла 28,8% от веса влажной древесины.Содержание влаги, выраженное в процентах от сырого веса, часто обозначается сокращенно m.c.w.b. (влажность, влажная основа).

Эффективное теплосодержание древесного топлива снижается за счет содержащейся в нем влаги двумя способами. Во-первых, чем больше воды в данном куске дерева, тем меньше в нем древесины. Во-вторых, часть топлива, содержащегося в древесине, используется для испарения воды при сжигании древесины. Приблизительно 1000 БТЕ тепловой энергии требуется для испарения каждого фунта воды в древесине.Кусок дерева содержит одинаковое количество энергии, будь то зеленый или сухой. Однако зеленая древесина плохо горит, потому что часть энергии уходит на испарение лишней воды. В таблице 7 приведена чистая энергетическая ценность (теплотворная способность) древесины при различной влажности.


Таблица 7. Энергетическая ценность древесины при различной влажности.
Влагосодержание во влажном состоянии (в процентах) Теплотворная способность (БТЕ на фунт) Вес (фунтов на шнур)
0 8,600 2,960
5 8,120 3,116
10 7,640 3 289
15 (правильно приправленный) 7,160 3 482
20 6 680 3,700
25 6 200 3 947
30 5,720 4 229
40 4,760 4 933
50 (зеленый) 3,800 5 920

Обратите внимание, что правильно выдержанная древесина имеет на 88 процентов более высокую теплотворную способность (по весу), чем зеленая древесина.Также обратите внимание, что зеленая древесина весит почти вдвое больше, чем выдержанная древесина. Кусок зеленого дерева весом в 1 фунт весит всего 0,59 фунта после выдержки. Кусок дерева, сгоревший в «зеленом» состоянии, дает примерно половину тепла, чем при правильной выдержке. Вот почему очень важно правильно выдерживать дрова. Для древесины, оставленной в виде цельного бревна, диаметром 12 дюймов или меньше, может потребоваться целый год, чтобы приправить ее должным образом. В идеале древесину, которая будет использоваться зимой, следует заготавливать предыдущим летом и дать ей высохнуть.Таким образом, древесина сушится за счет летнего тепла, а не за счет части энергии, содержащейся в самой древесине. Конечно, древесина, которой разрешили сезон, высохнет намного быстрее, если ее расколоть и хранить под навесом.

Плотность

Опыт показал, что дуб лучше для обогрева древесины, чем сосна, потому что дуб намного плотнее. Кубический фут сушеного на воздухе дуба весит около 42 фунтов, тогда как кубический фут сушеного на воздухе сосны лоблолли весит около 32 фунтов. Таким образом, дуб примерно на 32 процента плотнее сосны, а дубовый шнур обычно содержит на треть больше энергии, чем сосновый шнур.Это важное соображение, поскольку дрова обычно покупаются и продаются за шнур, который является мерой объема, а не веса. Важно помнить, что почти все породы древесины содержат примерно одинаковое количество энергии. Вы получаете больше фунтов древесины — и, следовательно, больше тепловой энергии — в веревке из более плотной древесины.

Другие виды топлива

Очень широко распространено мнение, что некоторые мягкие породы древесины, такие как сосна, производят больше смолы или креозота, чем лиственные породы.Многочисленные тесты показали, что это не так. Фактически, недавние испытания не показали заметной разницы в выходе смолы между сосной и дубом. При правильном обжиге древесины не должно образовываться смолы.

Помимо более традиционных видов древесного топлива, таких как щепа и дрова, колотые или круглые, могут быть доступны древесные отходы. Это могут быть древесные отходы мебельных заводов или обрезки пиломатериалов со стройплощадок или сносов. Все эти породы дерева подходят для использования. Однако следует помнить одну очень важную вещь: ни в коем случае нельзя сжигать обработанную древесину.Древесина, обработанная креозотом из каменноугольной смолы, например железнодорожные шпалы или опоры, сильно горит и выделяет густой черный токсичный дым. Древесина, обработанная такими соединениями, как хромированный арсенат меди (CCA), обычно имеет зеленовато-желтый или коричневый цвет и при горении выделяет очень токсичный дым. Обработка или вдыхание золы пиломатериалов, обработанных CCA, может вызвать острое отравление. Даже относительно небольшое количество обработанной древесины, смешанной с необработанной древесиной, может вызвать серьезные проблемы. Будьте осторожны и знайте, какой вид топлива вы используете.

Сравнение стоимости топлива

Сравнение древесины и мазута № 2 показывает, что энергосодержание различных видов топлива, обычно называемое удельной энергией, может широко варьироваться. Например, мазут номер 2 содержит около 19 000 БТЕ на фунт, тогда как сухая древесина содержит около 8 600 БТЕ на фунт. В пересчете на фунт за фунт мазут имеет более чем в два раза больше энергии, чем древесина. Однако сравнение удельной энергии древесины и мазута говорит только об этом.

По цене 1 доллар за галлон фунт мазута стоит около 13 центов. При цене 40 долларов за шнур фунт древесины белого дуба стоит менее одного цента. Таблица 7 показывает, что фунт правильно выдержанной древесины содержит около 7 160 БТЕ.

Следующие расчеты сравнивают эти виды топлива на основе стоимости на миллион БТЕ:

Мазут: 0,13 доллара за фунт ÷ 9000 БТЕ / фунт x 1000000 = 6,84 доллара за миллион БТЕ

Древесина: 0,008 долл. США / фунт ÷ 7 160 БТЕ / фунт x 1000000 = 1,12 долл. США за миллион

БТЕ

Эти расчеты показывают, что стоимость мазута более чем в шесть раз превышает стоимость древесины, необходимой для производства того же количества тепла.Таким образом, древесина имеет большое преимущество в стоимости по сравнению с большинством других видов топлива.

Возражения против использования древесины в качестве источника энергии обычно связаны с удобством. В очень холодную погоду большинство систем горячего водоснабжения, работающих на древесном топливе, необходимо топить хотя бы один раз за ночь. Конечно, есть недостатки в том, чтобы вставать в 2 часа ночи, чтобы запустить систему. С другой стороны, использование дерева определенно дает преимущество в стоимости.

При рассмотрении системы горячего водоснабжения, работающей на древесном топливе, не следует упускать из виду два других важных сравнения.Один из них — системные затраты, а другой — эффективность. Стоимость установки системы правильного размера зависит от индивидуальных потребностей. Например, большинство нефтегазовых систем рассчитаны на индивидуальные теплицы и устанавливаются в них, тогда как одна большая система горячего водоснабжения может вместить множество теплиц или несколько помещений для сушки табака вместе с другими зданиями и жилым помещением.

Второй аспект, который следует учитывать, — это эффективность системы. Эффективность, которая обычно выражается в процентах, является мерой того, насколько хорошо система преобразует и доставляет химическую энергию, хранящуюся в топливе, в полезную тепловую энергию.Процентное соотношение описывает долю потребляемой энергии, которая фактически преобразуется и используется в качестве полезного тепла. Важно понимать, что общая эффективность также зависит от того, насколько хорошо система отводит тепло. Другими словами, для системы недостаточно эффективно сжигать топливо, но тепло также должно доставляться с минимальными потерями к месту, где оно должно использоваться. В следующем примере показано, как рассчитывается общая эффективность:

Система водяного отопления на древесном топливе, как известно, сжигает 200 фунтов высушенной на воздухе древесины в час, за это время 2300 галлонов нагретой воды проходит через теплообменники теплицы с понижением температуры на 45 ° F.Температура воды в накопительном баке остается постоянной.

Энергетическая ценность высушенной на воздухе древесины составляет 7 160 БТЕ на фунт. Таким образом, энергия, выделяемая при сжигании 200 фунтов в час, составляет:

7160 БТЕ / фунт x 200 фунтов / час = 1432000 БТЕ / час

По определению 1 БТЕ — это количество тепловой энергии, необходимое для повышения температуры 1 фунта воды на 1 ° F. Один галлон воды весит 8,3 фунта; следовательно, тепловая энергия, отдаваемая системой, составляет:

2300 галлонов / час x 8.3 фунта / галлон x 45 ° = 859 050 БТЕ / час

Эффективность системы — это отношение выходной энергии к вложенной энергии:

Общий КПД, E = выход энергии системы ÷ вход энергии в систему

E = 859 050 / 1,432 000

E = 0,60 или 60%

Эти расчеты предполагают, что температура воды в резервуаре для хранения остается постоянной и что падение температуры на 45 ° F включает потери в трубопроводах, по которым вода идет в теплицу и из нее.

Без некоторых довольно сложных тестов очень сложно определить точную эффективность нагревательного устройства. Однако таблица 8 показывает, что типичная эффективность обычных систем отопления сильно различается.

При исследовании общей стоимости отопления с использованием различных видов топлива очень важно сравнивать эффективность системы, особенно если разница в стоимости на миллион БТЕ между двумя альтернативными видами топлива очень мала. Эффективность системы в меньшей степени влияет на то, какой выбор лучше, поскольку разница в стоимости между видами топлива увеличивается.В настоящее время существует значительная разница в стоимости между древесным топливом и другими широко используемыми видами топлива, чтобы сделать древесные системы рентабельными даже при довольно низкой эффективности. Очевидно, что при правильном проектировании для обеспечения максимальной эффективности использование деревянных систем будет дешевле.


Таблица 8. КПД различных типов систем отопления.
Тип системы КПД (в процентах)
Электрический резистивный нагреватель 98
Обогреватель сжиженного или природного газа 75
Масляная печь 65
Система горячего водоснабжения на древесном топливе 60

Значения в таблице 9 основаны на эффективности, показанной в таблице 8, и на предположениях, что корд из выдержанной древесины весит 3492 фунта и содержит 7,160 БТЕ на фунт, мазут содержит 138000 БТЕ на галлон и что Сжиженный нефтяной газ содержит 86 000 БТЕ на галлон.Стоимость владения и эксплуатации различных систем не включена.


Таблица 9. Сравнение безубыточной стоимости древесного топлива по сравнению с мазутом и сжиженным газом с учетом относительной эффективности системы.
Расходы на топливо
Дерево (на шнур) Мазут (на галлон) Сжиженный газ (на галлон)
$ 10 0 руб.06 0,043 $
20 0,12 0,086
30 0,18 0,129
40 0,24 0,172
50 0,30 0,215
60 0,36 0,258
70 0.42 0,301
80 0,48 0,344
100 0,60 0,430
140 0,84 0.602
180 1,08 0,774
200 1,20 0,860
250 1.50 1,075
300 1,80 1,290
400 2,40 1,720
500 3,00 2,150

Мы надеемся, что эта публикация помогла вам лучше понять, как работает правильно спроектированная система горячего водоснабжения, и определить, можете ли вы получить выгоду от ее установки.Если вы решите построить свою собственную систему, как это сделали многие, применение рекомендаций и процедур, приведенных в этой публикации, должно помочь вам построить высокоэффективную систему. Если вместо этого вы решите приобрести одно из имеющихся в продаже устройств, эта информация должна помочь вам выбрать лучшую систему для вашего приложения и эффективно управлять ею.

Для получения дополнительной информации о применении энергии на базе древесины см. Дополнительную публикацию AG-363, Руководство по энергии на базе древесины для сельского хозяйства и малых коммерческих предприятий .Кроме того, вам могут быть полезны следующие публикации:

Информационное руководство по энергии древесины. Роли, Северная Каролина: Отдел энергетики, Министерство торговли Северной Каролины, 1982 г.

Энергия древесины для малой энергетики в Северной Каролине. Роли, Северная Каролина: Отдел энергетики, Министерство торговли Северной Каролины, 1978 год.

Руководство для лиц, принимающих решения по древесному топливу для малых промышленных потребителей энергии. Голден, Колорадо: Исследовательский институт солнечной энергии, 1980.

Древесина как энергия, Обзор вопросов сельского хозяйства № 5.Вашингтон, округ Колумбия: Национальная сельскохозяйственная библиотека, Министерство сельского хозяйства США, 1984.

Водонагреватель на дровах — 1 000 000 БТЕ в час.

Водонагреватель на дровах — 2 000 000 БТЕ в час.

Майк Бойет

Philip Morris Professor
Биологическая и сельскохозяйственная инженерия

Р.В. Уоткинс

Профессор
Биологическая и сельскохозяйственная инженерия

Дополнительную информацию можно найти на следующих веб-сайтах NC State Extension:

Дата публикации: янв.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *