Система питания от устройств защиты от перенапряжения УЗИП
перейти к содержанию
Основная система электроснабжения, используемая в электроснабжении для строительных проектов, представляет собой трехфазную трехпроводную и трехфазную четырехпроводную систему и т. Д., Но коннотации этих терминов не очень строгие. Международная электротехническая комиссия (МЭК) разработала единые положения для этого, и это называется системой TT, системой TN и системой IT. Какая система TN делится на систему TN-C, TN-S, TN-CS. Ниже приводится краткое введение в различные системы электропитания.
система электроснабжения
В соответствии с различными методами защиты и терминологией, определенными IEC, низковольтные системы распределения электроэнергии делятся на три типа в соответствии с различными методами заземления, а именно системы TT, TN и IT, и описаны ниже.
Система питания TN-C
Система электропитания в режиме TN-C использует рабочую нейтральную линию в качестве линии защиты от перехода через нуль, которую можно назвать защитной нейтральной линией и обозначить как PEN.
Система электропитания TN-CS
Для временного источника питания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что на строительной площадке должна использоваться система питания TN-S, общая распределительная коробка может быть разделен в задней части системы. Помимо линии PE, система TN-CS имеет следующие особенности.
1) Рабочая нулевая линия N подключена к специальной защитной линии PE. Когда несимметричный ток линии велик, на нулевую защиту электрического оборудования влияет нулевой потенциал линии. Система TN-CS может снизить напряжение корпуса двигателя на землю, но не может полностью устранить это напряжение. Величина этого напряжения зависит от дисбаланса нагрузки проводки и длины этой линии. Чем больше несимметрична нагрузка и чем длиннее проводка, тем больше смещение напряжения корпуса устройства относительно земли. Следовательно, требуется, чтобы ток неуравновешенности нагрузки не был слишком большим, и чтобы линия защитного заземления заземлялась повторно.
2) Линия PE не может войти в устройство защиты от утечки ни при каких обстоятельствах, поскольку устройство защиты от утечки на конце линии вызовет срабатывание передней защиты от утечки и вызовет крупномасштабный сбой питания.
3) В дополнение к линии PE необходимо подключить к линии N в общей коробке, линия N и линия PE не должны подключаться в других отсеках. На линии защитного заземления нельзя устанавливать переключатели и предохранители, и заземление не должно использоваться в качестве защитного заземления. линия.
С помощью приведенного выше анализа система электропитания TN-CS временно изменена в системе TN-C. Когда трехфазный силовой трансформатор находится в хорошем рабочем состоянии заземления и трехфазная нагрузка относительно сбалансирована, влияние системы TN-CS на использование электроэнергии в строительстве все еще возможно. Однако в случае несбалансированной трехфазной нагрузки и специального силового трансформатора на строительной площадке необходимо использовать систему питания TN-S.
Система питания TN-S
Система электропитания в режиме TN-S — это система электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S. Характеристики системы питания TN-S следующие.
1) Когда система работает нормально, на выделенной линии защиты нет тока, но есть несимметричный ток на рабочей нулевой линии. На линии PE относительно земли нет напряжения, поэтому нулевая защита металлического корпуса электрооборудования подключена к специальной линии защиты PE, которая является безопасной и надежной.
2) Рабочая нейтральная линия используется только как цепь однофазной осветительной нагрузки.
3) Специальная защитная линия PE не может ни разорвать линию, ни войти в реле утечки.
4) Если устройство защиты от утечки на землю используется на линии L, рабочая нулевая линия не должна повторно заземляться, а линия PE имеет повторное заземление, но не проходит через устройство защиты от утечки на землю, поэтому устройство защиты от утечки также может быть установлено. на линии L источника питания системы TN-S.
5) Система питания TN-S безопасна и надежна, подходит для систем электроснабжения низкого напряжения, таких как промышленные и гражданские здания. Перед началом строительных работ необходимо использовать систему электроснабжения TN-S.
Система питания ТТ
Метод TT относится к защитной системе, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T означает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую заземлена, независимо от того, как заземлена система. Все заземления нагрузки в системе TT называется защитным заземлением. Характеристики этой системы питания следующие.
1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.
2) Когда ток утечки относительно невелик, даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.
3) Заземляющее устройство системы TT потребляет много стали, и его трудно перерабатывать, время и материалы.
В настоящее время некоторые строительные объекты используют систему ТТ. Когда строительная единица использует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.
Отделите линию PE новой добавленной специальной защитной линии от рабочей нулевой линии N, которая характеризуется:
1 Отсутствует электрическое соединение между общей линией заземления и рабочей нейтральной линией;
2 При нормальной работе рабочая нулевая линия может иметь ток, а специальная линия защиты не имеет тока;
3 Система TT подходит для мест с очень разбросанной защитой грунта.
Система питания TN
Система электропитания в режиме TN Этот тип системы электропитания представляет собой систему защиты, которая соединяет металлический корпус электрооборудования с рабочим нулевым проводом. Она называется системой нулевой защиты и представлена TN. Его особенности заключаются в следующем.
1) Когда устройство находится под напряжением, система защиты от перехода через ноль может увеличить ток утечки до тока короткого замыкания. Этот ток в 5.3 раза больше, чем у системы ТТ. На самом деле это однофазное короткое замыкание и перегорает предохранитель. Расцепитель низковольтного выключателя немедленно отключится и отключится, что сделает неисправное устройство более безопасным и отключенным.
2) Система TN экономит материал и человеко-часы и широко используется во многих странах и странах Китая. Это показывает, что система TT имеет много преимуществ. В системе питания с режимом TN он делится на TN-C и TN-S в зависимости от того, отделена ли линия защитного нуля от рабочей нулевой линии.
принцип работы:
В системе TN открытые токопроводящие части всего электрооборудования подключены к защитной линии и подключены к точке заземления источника питания. Эта точка заземления обычно является нейтральной точкой системы распределения электроэнергии. Система питания системы TN имеет одну точку, которая напрямую заземлена. Открытая электропроводящая часть электрического устройства подключается к этой точке через защитный провод. Система TN обычно представляет собой трехфазную сетевую систему с заземленной нейтралью. Его особенность заключается в том, что открытая проводящая часть электрооборудования напрямую подключена к точке заземления системы. Когда происходит короткое замыкание, ток короткого замыкания представляет собой замкнутый контур, образованный металлической проволокой. Образуется металлическое однофазное короткое замыкание, в результате чего возникает достаточно большой ток короткого замыкания, чтобы защитное устройство могло надежно срабатывать для устранения повреждения. Если рабочая нейтральная линия (N) повторно заземляется, при коротком замыкании корпуса часть тока может быть отведена в точку повторного заземления, что может привести к сбою надежной работы защитного устройства или во избежание отказа, тем самым расширяя неисправность. В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия. Поэтому самое важное, о чем мы заботимся, — это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N подключены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N. Исходная линия — это линия N. Предполагаемый ток нейтрали делится между линией N и линией PE, и часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением. По указанным выше причинам в соответствующих правилах четко указано, что нейтральная линия (т.е. линия N) не должна заземляться повторно, за исключением нейтральной точки источника питания.
ИТ-система
Система I источника питания в режиме IT указывает, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T указывает на то, что электрическое оборудование на стороне нагрузки заземлено.
Система электропитания в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии запрещено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах. Условия электроснабжения в подземных выработках относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю остается небольшим и не нарушит баланс напряжения источника питания. Следовательно, это более безопасно, чем система заземления нейтрали источника питания. Однако, если источник питания используется на большом расстоянии, распределенную емкость линии электропитания относительно земли нельзя игнорировать. Когда короткое замыкание или утечка нагрузки приводят к тому, что корпус устройства становится под напряжением, ток утечки образует путь через землю, и устройство защиты не обязательно срабатывает. Это опасно. Это безопаснее, только если расстояние от источника питания не слишком велико. На стройплощадке такой вид электроснабжения встречается редко.
Значение букв I, T, N, C, S
1) В обозначении метода электропитания, установленном Международной электротехнической комиссией (МЭК), первая буква обозначает взаимосвязь между системой питания (силовой) и землей. Например, T указывает, что нейтральная точка напрямую заземлена; I указывает, что источник питания изолирован от земли или что одна точка источника питания подключена к земле через высокий импеданс (например, 1000 Ом;) (I — первая буква французского слова Isolation слова «изоляция»).
2) Вторая буква указывает на электропроводящее устройство, находящееся на земле. Например, T означает, что корпус устройства заземлен. Он не имеет прямого отношения к любой другой точке заземления в системе. N означает, что нагрузка защищена нулем.
3) Третья буква обозначает комбинацию рабочего нуля и защитной линии. Например, C указывает, что рабочая нейтральная линия и линия защиты являются одним целым, например TN-C; S означает, что рабочая нейтральная линия и линия защиты строго разделены, поэтому линия PE называется выделенной линией защиты, например TN-S.
В электрической сети система заземления — это мера безопасности, которая защищает жизнь человека и электрооборудование. Поскольку системы заземления различаются от страны к стране, важно иметь хорошее представление о различных типах систем заземления, поскольку глобальная установленная мощность фотоэлектрических систем продолжает расти. Эта статья направлена на изучение различных систем заземления в соответствии со стандартом Международной электротехнической комиссии (МЭК) и их влияния на конструкцию системы заземления для фотоэлектрических систем, подключенных к сети.
Назначение заземления
Системы заземления обеспечивают функции безопасности, снабжая электрическую установку трактом с низким сопротивлением на случай любых неисправностей в электрической сети. Заземление также служит ориентиром для правильной работы источника электричества и предохранительных устройств.
Заземление электрического оборудования обычно достигается путем помещения электрода в твердую массу земли и соединения этого электрода с оборудованием с помощью проводника. О любой системе заземления можно сделать два предположения:
1. Потенциалы земли действуют как статические эталоны (т. Е. Ноль вольт) для подключенных систем. Таким образом, любой проводник, подключенный к заземляющему электроду, также будет обладать этим опорным потенциалом.
2. Заземляющие проводники и заземляющий стержень обеспечивают путь к земле с низким сопротивлением.
Защитное заземление
Защитное заземление — это установка заземляющих проводов, предназначенных для снижения вероятности травм в результате электрического повреждения в системе. В случае неисправности нетоковедущие металлические части системы, такие как рамы, ограждения, ограждения и т. Д., Могут получить высокое напряжение относительно земли, если они не заземлены. Если человек коснется оборудования в таких условиях, он получит удар электрическим током.
Если металлические части подключены к защитному заземлению, ток короткого замыкания будет проходить через заземляющий провод и восприниматься устройствами безопасности, которые затем надежно изолируют цепь.
Защитное заземление может быть достигнуто:
- Установка системы защитного заземления, при которой токопроводящие части соединяются с заземленной нейтралью распределительной системы посредством проводов.
- Установка устройств защиты от сверхтока или тока утечки на землю, которые срабатывают для отключения затронутой части установки в течение определенного времени и пределов напряжения прикосновения.
Провод защитного заземления должен быть способен пропускать предполагаемый ток короткого замыкания в течение времени, равного или превышающего время срабатывания соответствующего защитного устройства.
Функциональное заземление
При функциональном заземлении любая из токоведущих частей оборудования (либо «+», либо «-») может быть подключена к системе заземления с целью обеспечения контрольной точки для обеспечения правильной работы. Проводники не рассчитаны на токи короткого замыкания. В соответствии с AS / NZS5033: 2014 функциональное заземление разрешено только тогда, когда существует простое разделение между сторонами постоянного и переменного тока (например, трансформатор) внутри инвертора.
Типы конфигурации заземления
Конфигурации заземления могут быть расположены по-разному на стороне питания и нагрузки, при этом общий результат будет одинаковым. Международный стандарт IEC 60364 (Электрические установки для зданий) определяет три семейства заземления, определяемых с помощью двухбуквенного идентификатора в форме «XY». В контексте систем переменного тока «X» определяет конфигурацию нейтрального и заземляющего проводов на стороне питания системы (т. Е. Генератор / трансформатор), а «Y» определяет конфигурацию нейтрали / заземления на стороне нагрузки системы (т. Е. главный распределительный щит и подключенные нагрузки). ‘X’ и ‘Y’ могут принимать следующие значения:
Т — Земля (от французского ‘Terre’)
N — нейтральный
I — Изолированный
Подмножества этих конфигураций могут быть определены с помощью значений:
S — отдельный
C — Комбинированный
Используя их, три семейства заземления, определенные в МЭК 60364, — это TN, где электрическое питание заземлено, а нагрузки потребителя заземлены через нейтраль, TT, где электрическое питание и нагрузки потребителя заземлены отдельно, и IT, где только нагрузка потребителя. заземлены.
Система заземления TN
Единственная точка на стороне источника (обычно контрольная точка нейтрали в трехфазной системе, соединенной звездой) напрямую подключена к земле. Любое электрическое оборудование, подключенное к системе, заземляется через ту же точку подключения на стороне источника. Для систем заземления такого типа требуются заземляющие электроды через равные промежутки времени по всей установке.
Семейство TN состоит из трех подгрупп, которые различаются в зависимости от метода разделения / комбинации заземляющих и нейтральных проводников.
TN-S: TN-S описывает схему, в которой отдельные проводники для защитного заземления (PE) и нейтрали подводятся к потребителям от источника питания объекта (т. Е. Генератора или трансформатора). Проводники PE и N разделены почти во всех частях системы и соединяются вместе только на самом источнике питания. Этот тип заземления обычно используется для крупных потребителей, у которых есть один или несколько трансформаторов высокого / низкого напряжения, предназначенных для их установки, которые устанавливаются рядом или в помещениях заказчика.
Рис.1 — Система TN-S
TN-C: TN-C описывает схему, в которой комбинированная защитная заземляющая нейтраль (PEN) подключена к земле в источнике. Этот тип заземления обычно не используется в Австралии из-за рисков, связанных с возгоранием в опасных средах, и из-за наличия гармонических токов, делающих его непригодным для электронного оборудования. Кроме того, согласно IEC 60364-4-41 — (Защита для безопасности — Защита от поражения электрическим током), УЗО нельзя использовать в системе TN-C.
Рис 2 — Система TN-C
TN-CS: TN-CS обозначает установку, в которой на стороне питания системы используется комбинированный провод PEN для заземления, а на стороне нагрузки системы используется отдельный провод для PE и N. Этот тип заземления используется в распределительных системах. как в Австралии, так и в Новой Зеландии, и его часто называют множеством нейтралов по отношению к земле (MEN). Для низковольтного потребителя система TN-C устанавливается между трансформатором на площадке и помещением (нейтраль заземляется несколько раз вдоль этого сегмента), а система TN-S используется внутри самого объекта (от главного распределительного щита ниже по потоку). ). При рассмотрении системы в целом она рассматривается как TN-CS.
Рис.3 — Система TN-CS
Кроме того, согласно IEC 60364-4-41 — (Защита для безопасности — Защита от поражения электрическим током), если в системе TN-CS используется УЗО, провод PEN нельзя использовать на стороне нагрузки. Подключение защитного проводника к проводнику PEN должно выполняться на стороне истока УЗО.
Система заземления ТТ
В конфигурации TT потребители используют собственное заземление внутри помещения, которое не зависит от любого заземления на стороне источника. Этот тип заземления обычно используется в ситуациях, когда поставщик услуг распределительной сети (DNSP) не может гарантировать низковольтное подключение обратно к источнику питания. Заземление TT было распространено в Австралии до 1980 года и до сих пор используется в некоторых частях страны.
При использовании систем заземления TT во всех цепях питания переменного тока необходимо УЗО для обеспечения надлежащей защиты.
Согласно IEC 60364-4-41 все открытые токопроводящие части, которые совместно защищены одним и тем же защитным устройством, должны быть соединены защитными проводниками с заземляющим электродом, общим для всех этих частей.
Рис.4 — Система TT
Система заземления IT
В схеме заземления IT заземление либо отсутствует, либо выполняется через соединение с высоким импедансом. Этот тип заземления не используется для распределительных сетей, но часто используется на подстанциях и в независимых системах с питанием от генератора. Эти системы способны обеспечить бесперебойную подачу питания во время работы.
Рис 5 — IT-система
Последствия для заземления фотоэлектрической системы
Тип системы заземления, применяемый в любой стране, будет определять тип конструкции системы заземления, необходимой для фотоэлектрических систем, подключенных к сети; Фотоэлектрические системы рассматриваются как генератор (или цепь источника) и должны быть заземлены как таковые.
Например, странам, использующим заземляющее устройство типа TT, потребуется отдельная яма для заземления как для сторон постоянного, так и для переменного тока из-за устройства заземления. Для сравнения, в стране, где используется заземление типа TN-CS, простого подключения фотоэлектрической системы к основной шине заземления в распределительном щите достаточно, чтобы удовлетворить требованиям системы заземления.
Во всем мире существуют различные системы заземления, и хорошее понимание различных конфигураций заземления обеспечивает надлежащее заземление фотоэлектрических систем.
что это такое, особенности, как её выполнять
Система TN-C-S — это система распределения электроэнергии, в которой заземлена одна из частей источника питания, находящихся под напряжением. Открытые проводящие части электроустановки здания присоединены к заземленной части источника питания, находящейся под напряжением, в головной части электроустановки здания (от источника питания) посредством PEN-проводников, PEM-проводников или PEL-проводников, а в остальной части электроустановки здания — с помощью защитных проводников (PE) (определение согласно СП 437. 1325800.2018).
Вся информация, которую вы прочитаете ниже практически полностью основана на статьях Ю.В. Харечко с его книги [1], а также нормативной документации [2] и [3].
Особенности
При типе заземления системы TN-C-S (рис. 1 и 2) заземлена одна из частей источника питания, находящихся под напряжением, обычно – нейтраль трансформатора. Открытые проводящие части электроустановки здания имеют электрическое соединение с заземлённой частью источника питания, находящейся под напряжением. Для обеспечения этого соединения в низковольтной распределительной электрической сети обычно применяют PEN-проводники, а в электроустановке здания используют защитные проводники PE. В системе TN-C-S возможно также применение PEN-проводников в головной (по току электроэнергии) части электроустановки здания. При этом в электрических цепях остальной части электроустановки здания используют защитные проводники.
В системе TN-C-S также, как в системе TN-C в распределительной электрической сети применяют PEN-проводники, а в электроустановке здания так же, как в системе TN-S используют защитные проводники.
При типе заземления системы TN-C-S PEN-проводник всегда разделяют на защитный и нейтральный проводники в какой-то точке электроустановки здания. Это разделение может быть произведено на вводе в электроустановку здания – на вводном зажиме или на защитной шине вводно-распределительного устройства (рис. 1). Так следует делать в электроустановках жилых и общественных зданий, торговых предприятий, медицинских учреждений.
Рис. 1. Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен на вводе электроустановки здания (на основе рисунка 2.13 из книги [1] автора Харечко Ю.В.)
PEN-проводник может быть разделён также на вводном зажиме или на защитной шине другого распределительного устройства, которое соединено с ВРУ посредством распределительной электрической цепи, имеющей PEN-проводник в составе своих проводников (рис. 2).
Рис. 2. Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен для части электроустановки здания (на основе рисунка 2.14 из книги [1] автора Харечко Ю. В.)
На рисунках 1 и 2 обозначено:
- заземляющее устройство источника питания;
- заземляющее устройство электроустановки здания;
- открытые проводящие части;
- защитный контакт штепсельной розетки;
- ПС — трансформаторная подстанция;
- КЛ — кабельная линия электропередачи;
- ВЛ — воздушная линия электропередачи.
В первом случае (см. рисунок 1) во всей электроустановке здания применяются два проводника — защитный и нейтральный. Во втором случае (см. рисунок 2) в головной (по току электроэнергии) части электроустановки здания используют PEN-проводник, а после точки его разделения применяют защитный и нейтральный проводники. Открытые проводящие части электрооборудования класса I присоединяют соответственно к защитным проводникам во всей электроустановке здания (см. рисунок 1) или в головной части электроустановки здания их присоединяют к PEN-проводникам, а в остальной её части — к защитным проводникам (см. рисунок 2).
При типе заземления системы TN-C-S теоретически возможно разделение PEN-проводника на защитный и нейтральный проводники в любой точке распределительной электрической сети. Однако более надёжно производить разделение PEN-проводника в электроустановке здания, например, на вводных зажимах ВРУ (ВУ) или на его защитной шине.
Если трансформаторная подстанция встроена в здание, то электроустановку здания целесообразно выполнить с типом заземления системы TN-S, поскольку система распределения электроэнергии не будет иметь линии электропередачи.
Причины широкого распространения типа заземления системы TN-C-S в электроустановках жилых зданий.
Тип заземления системы TN-C-S получил широкое распространение в электроустановках жилых зданий, что обусловлено рядом причин:
- Во-первых, для реализации системы TN-C-S возможно использование существующих низковольтных распределительных электрических сетей без проведения их реконструкции.
- Во-вторых, систему TN-C-S можно рассматривать как логическое развитие системы TN-C. Поэтому электроустановки здания, соответствующие типу заземления системы TN-C-S, можно рассматривать как один из вариантов «модернизации» низковольтных электроустановок, получивших повсеместное распространение на территории нашей страны. Проектировщикам, электромонтажникам и персоналу, обслуживающему электроустановки зданий, сравнительно легко понять логическую трансформацию системы TN-C в систему TN-C-S, а также основные требования, которыми следует руководствоваться при выполнении защитных проводников в электроустановках зданий, имеющих этот тип заземления системы.
- В-третьих, в электрических цепях электроустановок зданий, соответствующих типу заземления системы TN-C-S, которые защищены устройствами дифференциального тока (УДТ), достаточно легко выявить ошибки, допущенные при соединении защитных и нейтральных проводников электропроводок. УДТ будут без какой-либо причины отключать защищаемые ими электрические цепи, сигнализируя о следующих ошибках, допущенных при выполнении монтажа проводников электропроводок:
- — присоединении нейтральных проводников к открытым проводящим частям электрооборудования класса I;
- — присоединении защитных проводников к зажимам электрооборудования, предназначенным для подключения нейтральных проводников;
- — электрическом соединении между собой защитных проводников и нейтральных проводников.
- В-четвёртых, при типах заземления системы TN ток замыкания на землю, протекающий в аварийной электрической цепи с фазного проводника на открытую проводящую часть и защитный проводник, может быть равным току однофазного короткого замыкания. Поэтому в составе такой меры защиты от поражения электрическим током, как автоматическое отключение питания, возможно использование устройств защиты от сверхтока — автоматических выключателей и плавких предохранителей. Однако в некоторых случаях нельзя обеспечить нормируемое время отключения с помощью устройств защиты от сверхтока. Тогда автоматическое отключение питания следует производить с помощью УДТ.
При применении типа заземления системы TN-C-S в электроустановках зданий можно обеспечить более высокий уровень электрической безопасности, чем при использовании типа заземления системы TN-C. Больший уровень электробезопасности, прежде всего, достигается вследствие использования в электроустановках зданий отдельных защитных проводников, по которым в нормальных условиях протекают токи утечки. Их значения существенно меньшие значений токов нагрузки, которые обычно протекают по PEN-проводникам. Незначительные электрические токи оказывают меньшее негативное воздействие на электрические контакты в цепях защитных проводников. Поэтому вероятность потери непрерывности электрической цепи у защитного проводника существенно меньше, чем у PEN-проводника.
При необходимости повысить уровень электробезопасности электроустановку здания следует выполнить с типом заземления системы TN-S. Это потребует строительства новой или реконструкции существующей низковольтной линии электропередачи.
В настоящее время систему TN-C-S повсеместно применяют на территории нашей страны. Для реализации системы TN-C-S используют существующие и новые низковольтные распределительные электрические сети, воздушные и кабельные линии электропередачи которых имеют три фазных проводника и PEN-проводник. На основе этих сетей можно также реализовать системы TN-C и TT.
Как выполнить тип заземления системы TN-C-S?
Для электроустановки индивидуального жилого дома.
Выполнить тип заземления системы TN-C-S для электроустановки индивидуального жилого дома достаточно просто. Разделение PEN-проводника следует произвести на вводных зажимах ВРУ (см. рисунок 1 статьи). Далее во всей электроустановке здания следует применять два проводника: защитный и нейтральный, которые не должны иметь ни преднамеренного, ни случайного электрического соединения между собой за точкой разделения PEN-проводника.
Электроустановку индивидуального жилого дома обычно подключают к низковольтной распределительной электрической сети. PEN-проводник линии электропередачи следует разделять на вводе в электроустановку индивидуального жилого дома (рис. 1). Подробнее о ВРУ см. статью «Как собрать трехфазное ВРУ для частного дома?«.
Для электроустановки вновь сооружаемых многоквартирных жилых зданий.
В электроустановках вновь сооружаемых многоквартирных жилых зданий тип заземления системы TN-C-S может быть реализован только одним способом, предусматривающим разделение PEN-проводника линии электропередачи на вводе в электроустановку здания, а именно на вводных зажимах ВРУ (см. рисунок 3).
Рис. 3. Электроустановка жилого многоквартирного здания, соответствующая типу заземления системы TN-C-S. PEN-проводник разделён в ВРУ (на основе рисунка 2.15 из книги [1] автора Харечко Ю.В.)
Для существующих электроустановок многоквартирных жилых зданий.
В существующих электроустановках многоквартирных жилых зданий тип заземления системы TN-C-S мог быть выполнен иначе. Например, PEN-проводники электрических стояков могли быть разделены на защитные и нейтральные проводники в этажных распределительных щитках (ЭРЩ), которые установлены на этажах жилого здания и подключены к электрическим стоякам (см. рисунок 4).
Рис. 4. Электроустановка жилого многоквартирного здания, соответствующая типу заземления системы TN-C-S. PEN проводник разделен в этажных распределительных щитках (на основе рисунка 2.16 из книги [1] автора Харечко Ю.В.)
На рисунках 3 и 4 обозначено:
- заземляющее устройство источника питания;
- заземляющее устройство электроустановки здания;
- открытая проводящая часть.
Примечание из книги [1] автора Харечко Ю.В. — на рисунках 3 и 4 электроустановки квартир условно представлены в виде однофазных электроприёмников класса I.
В первом варианте электрический стояк (см. рисунок 3), входящий в состав распределительной электрической цепи и предназначенный для передачи электроэнергии от ВРУ до этажных распределительных щитков, должен иметь 5 проводников — 3 фазных проводника, нейтральный проводник и защитный проводник. Во втором варианте (см. рисунок 4) электрический стояк выполнен из 3 фазных проводников и PEN-проводника.
Первый вариант построения электрических цепей защитных проводников в электроустановках жилых зданий, соответствующих типу заземления системы TN-C-S, который предписан требованиями ГОСТ 30331.1-2013, является более предпочтительным с точки зрения обеспечения защиты от поражения электрическим током, чем второй вариант. Первым вариантом реализации типа заземления системы TN-C-S следует руководствоваться при реконструкции существующих электроустановок жилых зданий.
Другие примеры выполнения системы TN-C-S.
Рис. 5. Система TN-C-S однофазная двухпроводная, в которой PEL-проводник разделён на защитный проводник PE и заземлённый линейный проводник LE на вводе электроустановкиРис. 6. Система TN-C-S однофазная двухпроводная с разделением PEL-проводникаРис. 7. Система TN-C-S однофазная двухпроводная, в которой PEN-проводник разделен на защитный проводник PE и нейтральный проводник N на вводе электроустановкиРис. 8. Система TN-C-S трехфазная трехпроводная, в которой PEL-проводник разделён на защитный проводник PE и заземленный линейный проводник LE на вводе электроустановкиРис. 9. Система TN-C-S трехфазная трехпроводная, в которой PEL-проводник разделен на защитный проводник PE и заземленный линейный проводник LE где-то в электроустановке
Об обслуживании электроустановок жилых зданий
Однако в настоящее время система обслуживания электроустановок жилых зданий далека от совершенства. Она не создает непреодолимых препятствий свободному доступу жильцов к электрическим стоякам и ЭРЩ. Это обстоятельство может быть причиной осуществления некоторых негативных воздействий на электроустановку жилого здания, которые снижают уровень защиты от поражения электрическим током и, следовательно, уменьшают преимущества от применения первого варианта по сравнению со вторым вариантом.
При выполнении электромонтажных работ жильцами, которые являются обычными лицами, резко возрастает вероятность ошибочного подключения зажимов какого-либо электрооборудования, предназначенных для подключения нейтральных проводников, к защитному проводнику электрического стояка, а открытых проводящих частей электроприёмников класса I — к его нейтральному проводнику. Подобные ошибки также могут появиться и при замене существующих электропроводок в квартирах и их неправильном подключении к электрическим стоякам, когда защитные проводники электропроводок ошибочно присоединяют к нейтральным проводникам электрических стояков, а нейтральные проводники электропроводок — к их защитных проводникам.
Такие ошибки более вероятны в электроустановках жилых зданий, электрические стояки которых выполнены проводниками, не имеющими цветовой и буквенно-цифровой идентификации, соответствующей требованиям ГОСТ 33542-2015. Вероятность совершения ошибок ещё более увеличивается в тех случаях, когда при подключении к электрическим стоякам какого-либо электрооборудования или электрических цепей используют проводники, не имеющие надлежащей цветовой идентификации.
Существующее положении усугубляет низкая квалификация персонала, эксплуатирующего электроустановки жилых зданий. При проведении ими ремонтных и эксплуатационных работ в электроустановке жилого здания возможно ошибочное подключение защитных зажимов электрооборудования класса I и даже ЭРЩ к нейтральному проводнику электрического стояка, а их нейтральных зажимов — к защитному проводнику электрического стояка. То есть и неконтролируемая работа жильцов, и действия эксплуатационного персонала низкой квалификации могут привести к снижению уровня электрической безопасности.
Список использованной литературы
- Харечко Ю.В. Основы заземления электрических сетей и электроустановок зданий. 6-е изд., перераб. и доп. – М.: ПТФ МИЭЭ, 2012. – 304 с.
- ГОСТ 30331.1-2013
- СП 437.1325800.2018
Типы распределительных систем для электроснабжения
Электрические системы различаются по признаку:
- Тип тока: AC, DC, 3(N)AC
- Тип и количество токоведущих проводов в системе: L1, L2, L3, Н соотв. L+, L-
- Тип заземления системы: IT, TT, TN
Тип заземления системы следует выбирать тщательно, так как он в значительной степени определяет поведение и свойства системы питания. Это также способствует возникновению проблем, связанных с использованием системы, таких как:
- Надежность снабжения и/или наличие электроэнергии
- Затраты на установку
- Техническое обслуживание, простои
- Электромагнитная совместимость
инж.). Открытые токопроводящие части электроустановки подключаются к заземлителям, электрически изолированным от заземлителя для заземления системы.
Допустимые защитные устройства:
- Устройство защиты от перегрузки по току
- Устройства защиты от токов короткого замыкания (GFCI)
В системах TN одна точка подключается непосредственно к земле, а открытые проводящие части электроустановки подключаются к этой точке через заземляющие проводники.
Существует три типа систем TN, различающихся расположением нулевого и защитного проводов заземления:
- TN-S: провод защитного заземления является отдельным по всей системе.
- TN-C: нейтральный и защитный заземляющие проводники объединены в один провод во всей системе.
- TN-C-S: Функции нейтрали и защиты объединены в одном проводнике в части системы.
В IT-системах все проводники под напряжением изолированы от земли или одна точка соединена с землей через импеданс. Таким образом, при возникновении замыкания на землю может протекать только небольшой ток утечки, в основном вызванный емкостями рассеяния системы. Верхние предохранители не срабатывают. Подача напряжения также сохраняется в случае однофазных прямых замыканий на землю.
Открытые проводящие части электроустановки либо
- имеют отдельные соединения с землей, либо
- имеют общее соединение с землей, либо
- имеют общее соединение с заземлением системы.
Разрешены следующие защитные устройства:
- Устройства контроля замыкания на землю (IMD)
- Устройства защиты от перегрузки по току
- Устройства защиты от токов утечки (УЗО), также известные как прерыватели цепи замыкания на землю (GFCI).
Характеристики
- Первое замыкание на землю не приведет к срабатыванию предохранителя или УЗО/УЗО.
- Устройство контроля замыкания на землю обнаружит и подаст сигнал о недопустимом повреждении изоляции.
- Замыкание на землю должно быть устранено как можно быстрее, прежде чем может произойти второе замыкание на землю на другом проводнике под напряжением, так как это может привести к отказу системы.
Тип системы подачи | Ваши преимущества | Недостатки |
SELV или PELV (безопасное сверхнизкое напряжение или защитное сверхнизкое напряжение) | • Отсутствие потенциальной опасности при контакте | • Ограниченная мощность, если развертывание оборудования должно быть рентабельным |
Защитная изоляция | • Можно комбинировать с другими типами систем | • Экономичен только при малых нагрузках |
ИТ-система | • ЭМС | • Оборудование должно иметь универсальную изоляцию для напряжения между внешними проводниками. |
система ТТ | • ЭМС | • Совместим только с низкими характеристиками мощности из-за использования GFCI |
Система TN-C | • Простота установки | • Несовместим с электромагнитной совместимостью |
Система TN-C-S | • Экономичный компромисс для зданий, в которых нет оборудования информационных технологий. | • Не соответствует ЭМС |
Система ТН-С | • Совместимость с ЭМС | • Повышенные затраты на технику безопасности для удаленного многоканального ввода |
Критерий | ТТ | ТН-С | ТН-С | ЭТО |
Безопасность людей | *** | *** | *** | *** |
Безопасность от опасности возгорания | *** | * | ** | *** |
Защита машины | *** | * | * | *** |
Доступность | ** | ** | ** | **** |
Электромагнитная совместимость | ** | * | ** | *** |
Обслуживание | ** | **** | **** | *** |
Монтаж | * | ** | ** | *** |
Общий результат | 16 | 14 | 16 | 22 |
* | Слабый |
** | Средний |
*** | Хороший |
**** | Отличный |
Загрузки
Изделия
Мониторинг замыкания на землю, незаземленный
ISOMETER® серия iso685
Детектор замыкания на землю для незаземленных систем переменного/постоянного тока
Определение места замыкания на землю, незаземленный
Серия ISOSCAN® EDS440
Модуль обнаружения замыкания на землю для незаземленных систем переменного/постоянного тока
Мониторинг замыкания на землю, незаземленный
ISOMETER® серия iso685
Детектор замыкания на землю для незаземленных систем переменного/постоянного тока
Детали
Определение места замыкания на землю, незаземленное
Серия ISOSCAN® EDS440
Модуль обнаружения замыкания на землю для незаземленных систем переменного/постоянного тока
Детали
Типы систем заземления – что такое заземление TT, IT и TN?
Стандарты, используемые для систем заземления Определения
За последнее столетие стандарты электробезопасности превратились в высокоразвитые системы, охватывающие все основные аспекты безопасной установки, включая системы заземления. В низковольтных (НН) электрических установках эталонный стандарт IEC 60364 используется для мер, которые должны быть реализованы, чтобы гарантировать защиту персонала и имущества.
Стандарт IEC 60364 определяет три типа систем заземления, а именно системы TT, IT и TN. Поскольку IEC публикует международные стандарты для всех электрических, электронных и связанных с ними технологий и является ведущей международной организацией в своей области, IEC 60364 является документом высшего уровня, который информирует о стандартах для низковольтных электроустановок во всем мире. Поэтому три типа систем заземления, определенные в IEC 60364, также признаны во многих национальных стандартах. BS 7671: 2008, также известный как Правила электропроводки IEE, 17-е издание, является британским стандартом, опубликованным в январе 2008 г., который используется в Великобритании и других странах. Точно так же индийский стандарт IS 732:1989 (R2015) используется в Индии для электроустановок.
Следите за последними обновлениями на LinkedIn
Система TN далее подразделяется на TN-C, TN-S и TN-C-S, поэтому мы будем ссылаться на 5 типов систем заземления, распространенных во всем мире.
Номенклатура
Первая буква каждой системы относится к источнику питания от обмотки, соединенной звездой.
Вторая буква относится к потребляющему оборудованию, которое необходимо заземлить.
Из «Справочника по электротехнике: для специалистов-практиков в нефтяной, газовой и нефтехимической промышленности» Алана Л. Шелдрейка
Для первой буквы « T означает, что начальная точка источника жестко соединена с землей , который обычно находится очень близко к обмотке.
I обозначают, что начальная точка и обмотка изолированы от земли. Начальная точка обычно связана с индуктивным импедансом или сопротивлением. Емкостное сопротивление никогда не используется».
А для второй буквы « Т означает, что потребитель заземлился глухозаземленным независимо от способа заземления источника.
N обозначает, что проводник с низким импедансом берется от заземления в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.
S обозначает, что нулевой провод, проложенный от источника, отделен от защитного заземляющего провода, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводников.
C обозначает, что нулевой провод и провод защитного заземления являются одним и тем же проводом. Это означает, что для трехфазного потребителя необходимо проложить четыре проводника».
Проще говоря:
T = прямое соединение с землей, T означает Terra, что означает земля
I = изолированный
N = нейтральный
S = отдельный
C = комбинированный
Наиболее распространенными системами являются TT и ТН. Некоторые страны, такие как Норвегия, используют ИТ-систему. В таблице ниже перечислены примеры систем заземления, используемых для общественного распределения (потребители низкого напряжения) в нескольких странах.
Система заземления TT
В этом типе системы заземления подключение к источнику питания напрямую связано с землей и со стороны нагрузки, или монтажные металлические конструкции также напрямую связаны с землей. Следовательно, в случае воздушной линии масса земли будет обратным путем для линии. Нейтраль и заземляющий проводник должны быть разделены при монтаже, так как распределитель питания обеспечивает только нейтральный или защитный провод питания для подключения к потребителю.
Система заземления IT
Распределительная система не имеет никаких соединений с землей или имеет только соединение с высоким импедансом. Основная особенность системы заземления IT заключается в том, что в случае короткого замыкания между фазами и землей система может продолжать работать без перерыва. Такая неисправность называется «первой ошибкой». Таким образом, обычная заземляющая защита для данной системы не эффективна, и этот тип не предназначен для питания потребителей. Система заземления IT используется для систем распределения электроэнергии, таких как подстанции или генераторы.
Система заземления TN-S
В этой системе заземляющий и нейтральный проводники разделены по всей системе распределения. Защитный проводник представляет собой металлическую оболочку кабеля, питающего установку. Все открытые токопроводящие части установки подключаются к этому защитному проводнику или через главный заземляющий зажим установки.
Система заземления TN-C
Нейтраль и защитное заземление объединены в один провод во всей системе. Все открытые и токопроводящие части установки подключаются к проводнику PEN. В соответствии с пунктом 8 (4) Правил безопасности, качества и непрерывности электроснабжения 2002 г. «Потребитель не должен совмещать функции нейтрали и защиты в одном проводнике в установке своего потребителя».
Система заземления TN-C-S
Нейтраль и защитное заземление объединены в одном проводнике в части системы. Этот тип заземления также известен как многократное защитное заземление. PEN-проводник системы питания заземляется в двух или более точках, и может потребоваться заземляющий электрод на установке потребителя или рядом с ней.