Сравнительные характеристики утеплителей: таблица — Блог о строительстве
Сегодня в данной статье мы рассмотрим актуальный в наше время вопрос о сроке службы утеплителей в таблице.
Как правило, дома, здания и другие сооружения утепляются на длительное время, поэтому и материалы нужны как можно надежнее и качественнее.Многие считают, что различного рода утеплители не служат более 30 лет. С учетом того, что стена, которая утепляется, стоит около 100 лет, приходим к выводу, что за это время процедуру необходимо проделать 2-3 раза. Если посчитать стоимость такого обновления, то она может далеко не порадовать.
Содержание
- 1 Что влияет на срок эксплуатации утеплителя?
- 2 Сравнительные характеристики сроков службы утеплителей таблица
- 3 Срок службы пенопласта как утеплителя
- 4 Сравнение утеплителей по характеристикам
- 5 Пенопласт (пенополистирол)
- 6 Экструдированный пенополистирол
- 7 Базальтовая (минеральная) вата
- 8 Стекловолокно (стекловата)
- 9 Вспененный полиэтилен
- 10 Напыляемая теплоизоляция
- 11 Сравнение утеплителей. Таблица теплопроводности
- 12 Каким требованиям должен отвечать качественный утеплитель для дома?
Что влияет на срок эксплуатации утеплителя?
Как и во всем, считается, что срок службы утеплителя зависит от его стоимости и качества. Производители недорогого вещества утверждают, что он может прослужить как минимум 50 лет. На практике эта цифра ничем не подтверждается, поэтому в сносках они пишут, что на сегодня нет стандартного времени эксплуатации утеплителей.
Кроме того, важно то, из чего сделан материал. Эксперты подтверждают, что искусственные волокна не могут дать гарантии более чем на 35 лет.За это время они усыхают и разрушаются. Но самое главное, что они теряют половину своих теплосберегающих свойств.
В то время как натуральные волокна не теряют своих первоначальных качеств и могут служить более длительный период.Согласно нормативным рекомендациям, после завершения строительства каждый дом должен подвергаться энергетическому аудиту. Такие проверки должны проводиться раз в 25 лет, чтобы можно было оценить уровень теплосберегающих свойств на данный момент. Но так как узнать точные цифры вследствие проверки нам не удается, мы пользуемся данными, которые приходят к нам из Европы.
Сравнительные характеристики сроков службы утеплителей таблица
Существует множество видов утеплителей, но сегодня мы подробно рассмотрим самые бюджетные и надежные варианты. К ним относятся:
- Минеральная вата.Базальная вата.Пенопласт.
НаименованиеСрок службыМинеральная вата25-40 летБазальная вата40-50 летПенополистирол30-50 летПенополиуретан20-50 летПеностекло80-100 лет
Первый вид называется каменным.Он имеет достаточно высокий уровень качества, так как его производят из базальтового камня. Стоимость его значительно выше, но и качество, и период пригодности оправдывает ожидания.
Согласно статистике, больше всего в строительстве применяется минеральная вата.Продолжительность эксплуатации — около 50 лет. Но этот показатель все еще оспаривают, и он имеет несколько нюансов. На данный момент существует два вида минеральной ваты.
Второй является шлаковым. Это означает, что в него практически не может проникнуть вода, а сам материал достаточно плотный. Соответственно, он изготавливается из шлаков от металлургической промышленности.Он значительно уступает предыдущему и в цене, и в качестве, и в сроке службы.
К тому же, не стойкий к резким перепадам температуры и по истечении определенного времени может деформироваться. Но несмотря на это, его часто используют как оптимальный вариант в случае, если постройка будет временной или менее значимой.Безусловно, для сооружений более значительного масштаба рекомендуется использовать каменную вату. Пусть она и дороже, но, когда речь идет о безопасности и качестве, об экономии не может быть и речи.Стоит отметить, что данное вещество имеет два немаловажных преимущества:Негорючесть.Можно не беспокоиться о том, что материал не подвержен возгоранию от металлочерепицы, которая в сильную жару может нагреваться до высоких показателей.
А также другие воздействия высоких температур не станут угрозой для утеплителя, а соответственно и для вас. Паропроницаемость. Изовер обладает способностью «дышать», что также немаловажно.Материал без труда пропускает все пары через себя, но при этом они не скапливаются внутри. Это свойство делает минеральную вату экологически чистой, а в сочетании с теплоизоляцией это огромный плюс.
Кроме того, дополнительной обработки от конденсата не требуется.Базальная вата не уступает в продолжительности периода действия предыдущего вещества. Производители дают гарантию свыше 50 лет. Еще очень давно в строительстве стали использовать утеплитель, изготовленный из волокнистого материала.Но пик его эксплуатации приходится на последние пару десятилетий.
Это произошло благодаря интенсивному строительству загородных домов, а также повышению цен на отопление. Именно там материал пользуется огромной популярностью.Со временем качество базальной ваты значительно улучшилось. Теперь это экологически чистый и безопасный продукт.
Из основных плюсов можно выделить несколько аспектов:Пожаробезопасность. Материал без труда способен выдержать высокую температуру, не теряя при этом своих свойств.Низкая гидрофобность.Вещество отталкивает влагу, что заметно увеличивает срок эксплуатации утепления.Сжимаемость. Базальная вата является очень стойкой и не подвергается деформации.Химическая стойкость.
Гниение, грибок, грызуны, плесень и вредоносные микроорганизмы больше не станут угрозой для вашего жилья.Несмотря на стечение обстоятельств, материалы имеют отличное качество, не деформируются и не рассыпаются. Вещества используются повсеместно и имеют множество положительных отзывов. С таким утеплением ваши стены смогут простоять более 100 лет.
Срок службы пенопласта как утеплителя
Еще одним из часто используемых материалов для утепления является пенопласт. Принято считать, что срок годности пенополистирола достигает несколько десятков лет.
Производители дают гарантию на стойкость материала в течение 50 лет. Однако при правильной процедуре утепления этот срок может быть увеличен в два раза. Это одна из основных причин, по которым он так популярен.
Следует учитывать, что существует несколько видов утеплителей, изготовленных из пенопласта:
Полистирол. Материал, который делают в виде поролона. Подходит для защиты помещения с внутренней стороны.
Имеет очень высокие эксплуатационные характеристики.Поливинилхлоридные веществаявляются очень эластичными. Имеют очень высокий показатель стойкости.Пенополиуретан. Он считается выносливой теплоизоляцией, которая прослужит довольно долгое время, быстро застывает, образовывая очень крепкую защиту, способную выдержать множество внешних воздействий.
Исходя из вышеперечисленных материалов, можно сделать вывод, что срок службы пенопласта является очень долгим и полностью оправдывает ожидания.
Сегодня производители теплоизоляционных материалов предлагают застройщикам действительно огромный выбор материалов.
При этом каждый уверяет нас, что именно его утеплитель идеально подходит для утепления дома. Из-за такого разнообразия стройматериалов, принять правильное решение в пользу определенного материала действительно довольно сложно. Мы решили в данной статье сравнить утеплители по теплопроводности и другим, не менее важным характеристикам.
Стоит сначала рассказать об основных характеристиках теплоизоляции, на которые необходимо обращать внимание при покупке. Сравнение утеплителей по характеристикам следует делать, держа в уме их назначение. Например, несмотря на то, что экструзия XPSпрочнее минваты, но вблизи открытого огня или при высокой температуре эксплуатации, стоит купить огнестойкий утеплитель для своей же безопасности.
Сравнение утеплителей по характеристикам
Теплопроводность. Чем ниже данный показатель у материала, тем меньше потребуется укладывать слой утеплителя, а значит, расходы на закупку материалов сократятся (в том случае если стоимость материалов находится в одном ценовом диапазоне). Чем тоньше слой утеплителя, тем меньше будет «съедаться» пространство.
Теплопотери частного дома через конструкции
Влагопроницаемость. Низкая влаго- и паропроницаемость увеличивает срок использования теплоизоляции и снижает отрицательное воздействие влаги на теплопроводность утеплителя при последующей эксплуатации, но при этом увеличивается риск появления конденсата на конструкции при плохой вентиляции.
Пожаробезопасность. Если утеплитель используется в бане или в котельной, то материал не должен поддерживать горение, а наоборот должен выдерживать высокие температуры. Но если вы утепляете ленточный фундаментили отмостку дома, то на первый план выходят характеристики влагостойкости и прочности.
Экономичность и простота монтажа. Утеплитель должен быть доступным по стоимости, иначе утеплять дом будет просто нецелесообразно. Также важно, чтобы утеплить кирпичный фасад дома можно было бы своими силами, не прибегая к помощи специалистов или, используя дорогостоящее оборудование для монтажа.
Характеристики керамзита фракции 20-40 мм
Экологичность. Все материалы для строительства должны быть безопасными для человека и окружающей природы. Не забудем упомянуть и про хорошую звукоизоляцию, что очень важно для городов, где важно защитить свое жилье от шума с улицы.
Какие характеристики важны при выборе утеплителя? На что обратить внимание и спросить у продавца?
Только ли теплопроводность имеет решающее значение при покупке утеплителя, или есть другие параметры, которые стоит учесть? И еще куча подобных вопросов приходит на ум застройщику, когда приходит время выбирать утеплитель. Обратим внимание в обзоре на наиболее популярные виды теплоизоляции.
Пенопласт (пенополистирол)
Пенопласт – самый популярный сегодня утеплитель, благодаря легкости монтажа и низкой стоимости.
Изготавливается он методом вспенивания полистирола, имеет низкую теплопроводность, легко режется и удобен при монтаже. Однако материал хрупкий и пожароопасен, при горении пенопласт выделяет вредные, токсичные вещества. Пенополистирол предпочтительно использовать в нежилых помещениях.
Утепление пеноплексом отмостки и цоколя дома
Экструдированный пенополистирол
Экструзия не подвержена влаге и гниению, это очень прочный и удобный в монтаже утеплитель.
Плиты Техноплекса имеют высокую прочность и сопротивление сжатию, не подвергаются разложению. Благодаря своим техническим характеристикам техноплексиспользуют для утепления отмостки и фундамента зданий. Экструдированный пенополистирол долговечен и прост в применении.
Базальтовая (минеральная) вата
Производится утеплитель из горных пород, путем их плавления и раздува для получения волокнистой структуры.
Базальтовая вата Роклайт выдерживает высокие температуры, не горит и не слеживается со временем. Материал экологичен, имеет хорошую звукоизоляцию и теплоизоляцию. Производители рекомендуют использовать минеральную вату для утепления мансарды и других жилых помещений.
Утепление кровли минватой Роклайт ТехноНИКОЛЬ
Стекловолокно (стекловата)
При слове стекловата у многих появляется ассоциация с советским материалом, однако современные материалы на основе стекловолокна не вызывают раздражения на коже. Общим недостатком минеральной ваты и стекловолокна является низкая влагостойкость, что требует устройства надежной влаго- и пароизоляции при монтаже утеплителя. Материал не рекомендуется использовать во влажных помещениях.
Вспененный полиэтилен
Этот рулонный утеплитель имеет пористую структуру, различную толщину часто производится с нанесением дополнительного слоя фольги для отражающего эффекта. Изолон и пенофолимеет толщину в 10 раз тоньше традиционных утеплителей, но сохраняет до 97% тепла. Материал не пропускает влагу, имеет низкую теплопроводность благодаря своей пористой структуре и не выделяет вредных веществ.
Утепление ленточного фундамента снаружи ППУ
Напыляемая теплоизоляция
К напыляемой теплоизоляции относится ППУ (пенополиуретан) и Экотермикс. К главным недостаткам данных утеплителей относится необходимость наличия специального оборудования, для их нанесения. При этом напыляемая теплоизоляция создает на конструкции прочное, сплошное покрытие без мостиков холода, при этом конструкция будет защищена от влаги, так как ППУ влагонепроницаемый материал.
Сравнение утеплителей. Таблица теплопроводности
Сравнение утеплителей по теплопроводности
Полную картину о том, какой следует использовать утеплитель в том или ином случае, дает таблица теплопроводности теплоизоляции. Вам остается только соотнести данные из этой таблицы со стоимостью утеплителя у разных производителей и поставщиков, а также рассмотреть возможность его использования в конкретных условиях (утепление кровли дома, ленточного фундамента, котельной, печной трубы и т.д.).(4,33из 5)Загрузка…
- Дата: 09-03-2015Просмотров: 455Комментариев: Рейтинг: 45
При строительстве нового дома или капитальном ремонте возникает вопрос о выборе оптимального способа утепления. Для того чтобы после окончания работ не возникало чувство горького сожаления о потраченных впустую средствах и времени, вариант теплоизоляции необходимо подбирать, основываясь на его характеристиках, основных достоинствах и недостатках.
При проектировании дома, необходимо так же задумать и о его теплоизоляции.
Каким требованиям должен отвечать качественный утеплитель для дома?
На современном строительном рынке представлено огромное многообразие материалов для утепления. Они подразделяются на утеплители для стен, пола, крыши, дверей, качества. Распространенное мнение, что главным критерием при выборе данного стройматериала является плотность, является ошибочным.
Средняя плотность теплоизоляционных материалов достаточна низка в сравнении с большинством строительных материалов, так как значительный объем занимают поры. Плотность современных утеплителейнаходится в диапазоне от 17 до 400 кг/м 3.
Таблица эффективности применения утеплителей.
Она учитывается, при сравнении характеристики утеплителей, предназначенных для теплоизоляции полов, фундамента и внешней облицовки, для которой не предусмотрен отделочно-декоративный дополнительный защитный слой. Помимо этого, эта характеристика влияет на выбор несущей конструкции и способ крепежа. Все различные материалы могут иметь одинаковую плотность, но обладать разной теплопроводностью.
Важным показателем, который должен повлиять на выбор, является водопоглощение.
Само помещение и стены как обычного, так и деревянного дома всегда содержат некоторое количество влаги, которая может конденсироваться и пагубно влиять на качество теплоизоляции. Сорбционная влажность — характеристика, показывающая предельный массовый объем влаги в стройматериале, впитываемый из атмосферного слоя или домашнего воздуха. Особенно коэффициент водопоглощения важен при выборе утеплителя, предназначенного для помещений с повышенной влажностью (ванной, санузла, бани и сауны).
Этот показатель обязательно следует учесть при выполнении внешней теплоизоляции зданий, расположенных на заболоченной местности или имеющих высокое залегание грунтовых вод. К примеру, экструдированный пенополистирол отличается высокой плотностью, но при этом низким водопоглощением. Значительно снизить водопоглощение минераловатных и стекловолокнистых теплоизоляционных материалов позволяет их гидрофобизация, например, путем введения кремнийорганических добавок.
Высококачественные утепляющие материалы всегда обладают хорошей звукоизоляцией.
Характеристики минеральной ваты.
На долговечность конструкции покрытия влияют также химическая стойкость теплоизоляционного материала (это, как правило, следует учитывать при выборе материалов для утепления покрытий производственных зданий) и его биологическая стойкость.
Также стоит рассмотреть такие физические свойства, как:
Паропроницаемость. Этот параметр приобретает значение при монтаже энергосберегающей облицовки в домах с повышенной влажностью и при утеплении крыши;Воздухопроницаемость.
Характеристика приобретает значение, если утепляющий материал будет монтироваться в несколько слоев и особенно при теплоизоляции внутри помещения (стены, пол и потолок) и балкона.Горючесть. Необходимо учитывать, если утепляющая облицовка не предусматривает декоративно-защитной отделки. Это правило регламентируется инструкцией по пожарной безопасности.
Вернуться к оглавлению
Выбирая теплоизоляцию для домов, необходимо обратить внимание на механические качества утеплителя:
Характеристики пенопласта и пенополистирола.
Прочность отвечает за способность стройматериала сопротивляться деформированию и разрушению при воздействии внешних сил. Она находится в прямой зависимости от структуры и пористости.
Жесткий мелкопористый утеплитель является более прочным в сравнении с материалом, имеющим крупные неравномерные поры.Прочность на изгиб и на сжатие должна учитываться при утеплении кровли и конструкции, имеющей сложные геометрические форм, к примеру, мансарды;Морозостойкость отвечает за устойчивость и сохранение эксплуатационных качеств материала в условиях воздействия низких температурных режимов. Проще говоря, это способность материала в насыщенном состоянии выдерживать многократное попеременное замораживание и оттаивание без появления признаков разрушения. В Северных районах долговечность всей конструкции существенно зависит от этой характеристики;Такие характеристики, как упругость, гибкость и сжимаемость различных видов теплоизоляции, влияют на простоту монтажа и на плотность заполнения пустот.
Вернуться к оглавлению
Выбрать идеально подходящий материал для теплоизоляции деревянного дома или квартиры достаточно сложно, так как рекламные слоганы позиционируют каждый продукт, как лучший и инновационный . Сориентироваться в этом многообразии нелегко. К тому же каждый из видов утеплителя подходит для своей конкретной зоны в помещении.
В обязательном порядке следует тщательно изучать характеристики, указанные производителем на упаковке, так как качество утепления напрямую зависит от правильно выбранного теплоизолятора.
Чаще всего используются следующие энергосберегающие материалы:
- Волокнистая изоляция: минеральная вата, стекловата, шлаковая вата, каменная вата;Полимерная изоляция: пенополистиролы, пенопласты, пенополиэтилены, пенополиуретаны и другие.Фольгированные и жидкие утеплители.
Каждый вид утеплителя стоит рассмотреть отдельно.
Схема устройства фольгированного утеплителя.
Минеральная вата. Плиты с минватой предназначены для утепления стеновых перекрытий, полов, крыш. Рулонная минеральная вата используется при теплоизоляции труб, криволинейных объектов и промышленного оборудования.
Это негорючий, стойкий к механическим воздействиям, жаростойкий материал. Он отличается низкой теплопроводностью, хорошими звукопоглощением и паропроницаемостью, легко поддается обработке, что значительно облегчает установочные работы. Но он сложен в состыковке и восприимчив к влаге.Экструдированный пенополистирол.
Выпускается плитами, толщиной от 5 до 15 см. Этот материал отличается жесткостью и состоит из замкнутых ячеек, внутри которых находится воздух. Он является универсальным по способу применения, но показатели теплопроводности являются самыми низкими по сравнению с другими утеплителями этого вида.
К достоинствам экструдированного пенополистирола можно отнести паронепроницаемость и водопоглощение, поэтому материал не создаст благотворной питательной среды для бактерий и грибков. Хорошо подходит для теплоизоляции подвалов, цоколей, плоских крыш, фасадов и полов на грунте. Пенопласт. Пенопласт — экологически чистый и нетоксичный материал, отличающийся хорошей звуко- и теплоизоляцией.
К его характерным особенностям можно отнести доступную стоимость и безвредность. Как и экструдированный пенополистирол, он абсолютно не подвержен гниению и не создает питательной среды для развития микроорганизмов. К минусам материала можно отнести низкие противопожарные характеристики, поэтому он не рекомендован при утеплении деревянного дома и вентилируемых фасадов бетонных помещений.
В основном он используется для теплоизоляции каменных стен, подготовленных под дальнейшее оштукатуривание. К существенным минусам понопласта и пенополистирола относится то, что ими нельзя утеплять постройки из дерева.Отражающая изоляция. Утеплитель фольгированный является сравнительно новым материалом.
Его основу составляют вспененный полиэтилен или базальтовая вата, с верхним отражающим слоем из алюминиевой фольги или металлизированной пленки. Отличается о тонкостью, легкостью и гибкостью, хорошо сохраняет тепло, экологичен и экономичен. Это практически единственный утеплитель, который отражает излучение, это является достаточно важным при утеплении производственных и жилых помещений с повышенным радиационным фоном.Фольгированный утеплитель находит свое применение при термоизоляции водоснабжающих и отопительных систем, воздуховодов, саун и бань.
Вернуться к оглавлению
Жидкий утеплитель тоже является новым материалом на строительном рынке. Он похож на обыкновенную краску. Жидкая теплоизоляция имеет водную основу с акриловыми полимерами и вспененными керамическими гранулами в составе.
Отличается маловесностью, хорошей растяжимостью и фиксацией на любой поверхности. Жидкая теплоизоляция имеет достоинства в виде антикоррозийной защиты поверхности и вывода конденсата. Применяется он при утеплении фасадов, кровель, стен, воздуховодов, трубопроводов, паровых котлов, газопроводов и паропроводов, холодильных камер, промышленных объектов и так далее.
Описание и сравнительная таблица эффективности применения различных утеплителей в строительных конструкциях
На основании вышеперечисленного можно сделать вывод, что каждый термоизолятор по-своему хорош. Важно лишь определиться со сферой использования, в которой он покажет наилучший результат.
Источники:
- uteplix.com
- uteplitel-x.ru
- ostroymaterialah.ru
Сравнение утеплителей — свойства и таблица теплопроводности. Жми!
Требования к частным домам и квартирам по уровню сохранения тепла значительно повысились. Многие прибегают к дополнительной отделке чердачных перекрытий, внешних стен по причине постоянного повышения стоимости энергоносителей.
За последние годы появилось достаточно материалов, позволяющих значительно улучшить сбережение тепла в частном доме или квартире. Они также обладают рядом других свойств, что в целом делает их прекрасной альтернативой капитальной реконструкции.
Разновидности и описание
На выбор потребителей предлагаются материалы с различными механическими свойствами.
От этого во многом зависит удобство монтажа и свойства. По данному показателю различают:
- Пеноблоки. Изготавливаются из бетона со специальными добавками. В результате химической реакции структура получается пористой.
- Плиты. Строительный материал различной толщины и плотности изготавливается при помощи прессования или склеивания.
- Вата. Продается в рулонах и характеризуется волокнистой структурой.
- Гранулы (крошка). Сыпучие утеплители с пеновеществами различной фракции.
[warning]Важно знать: подбор материала осуществляется с учетом свойств, стоимости и предназначения. Применение одинакового утеплителя для стен и чердачного перекрытия не позволит получить желаемый эффект, если не указано, что он предназначен для конкретной поверхности.[/warning]
Сырьем для утеплителей могут выступать различные вещества. Они все делятся на две категории:
- органические на основе торфа, камыша, древесины;
- неорганические — изготавливаются из вспененного бетона, минералов, асбестосодержащих веществ и др.
Основные свойства
Эффективность материала во многом зависит от трех основных характеристик. А именно:
- Теплопроводность. Это главный показатель материала, выражается коэффициентом, исчисляется в ваттах на 1 метр квадратный. В зависимости от уровня удержания тепла требуется разное количество утеплителя. На него существенно влияет показатель впитывания влаги.
- Плотность. Не менее важная характеристика. Чем выше плотность пористого материала, тем эффективнее будет удерживаться тепло внутри здания. В большинстве случаев именно данный показатель является определяющим при выборе утеплителя для стен, этажного перекрытия или крыши.
- Гигроскопичность. Устойчивость к воздействию влаги очень важна. Например, цокольные перекрытия, которые расположены в сырых местах, важно утеплять материалом с самой низкой гигроскопичностью, каким является, например, пластиформ.
Нужно обращать внимание и на ряд других показателей. Это устойчивость механическим повреждениям, перепадам температур, горючесть и длительность эксплуатации.
Сравнение основных показателей
Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.
Материал | Плотность кг/м3 | Теплопроводность | Гигроскопичность | Минимальный слой, см |
Пенополистирол | 30-40
| Очень низкая | Средняя | 10 |
Пластиформ | 50-60 | Низкая | Очень низкая | 2 |
Пенофол | 60-70 | Низкая | Средняя | 5 |
Пенопласт | 35-50 | Очень низкая | Средняя | 10 |
Пеноплекс | 25-32 | низкая | низкая | 20 |
Минеральная вата | 35-125 | Низкая | Высокая | 10-15 |
Базальтовое волокно | 130 | Низкая | высокая | 15 |
Керамзит | 500 | Высокая | Низкая | 20 |
Ячеистый бетон | 400-800 | Высокая | Высокая | 20-40 |
Пеностекло | 100-600 | Низкая | низкая | 10-15 |
Таблица 1 Сравнение теплоизоляционных свойств материалов
Из приведенных видов лидером в рейтинге считается пенопласт. Материал имеет неоспоримые достоинства, в том числе доступную стоимость.
При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.
Особенности применения
Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя.
Также следует придерживаться следующих рекомендаций:
- Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
- Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена. В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства.
- Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.
Монтаж различных видов
Выбирая тот или иной материал для лучшего сохранения тепла в доме или квартире, нужно учесть особенности его установки. Сложность и набор инструментов для проведения монтажных работ во многом зависит от формы теплоизоляции. А именно:
- керамзит. Применяется исключительно для полов и межэтажных перекрытий. Нужен шанцевый инструмент и дополнительные стройматериалы (стяжка или доски). Также потребуется гидроизоляционный слой в виде рубероида или другого аналогичного материала.
- минеральная вата. Правильный монтаж предполагает использование ручного инструмента для крепления каркаса. Минеральная вата очень просто устанавливается в заранее подготовленные ячейки, но требуется равномерное крепление по всей плоскости. Гидроизоляционный слой поверх утеплителя – обязательное условие продолжительной эксплуатации. Может использоваться для вертикальных и горизонтальных поверхностей.
[advice]Обратите внимание: занимаясь монтажом любого вида утеплителя важно помнить о гидро- и пароизоляции. Защитить отделку от прямого воздействия влаги очень важно.[/advice]
- пенопласт. Плиты крепятся к поверхности дюбелями с «пятаками». Среди необходимых инструментов шуруповерт, перфоратор, строительный нож и дюбеля. Форма стройматериала и легкий вес позволяет даже самостоятельно выполнить весь объем работ за короткий период времени.
- пеностекло. Для плотного соединения с поверхностью используются механические крепления или же растворы (цемента, мастик и других клеевых составов). Выбор зависит от материала стен. Большой популярностью пользуются блоки, но также в ассортименте имеются плиты и гранулы.
Что выбрать
Ежегодно появляются новые стройматериалы на различных выставках. С их помощью можно значительно сократить расходы на энергоресурсы в холодное время года. Но какой же из них будет оптимальным решением по всем параметрам. Мнения экспертов во многом расходятся.
Подбор материала основывается на свойствах, стоимости и удобстве монтажа. Производители наносят определенную маркировку на изделия, что существенно упрощает выбор. Например, пенопласт для стен, пола или крыши отличается свойствами и имеет специальные отметки.
Многие отдают предпочтение минеральной вате в сухих помещениях, пенопласту в помещениях с повышенной влажностью, и напыляемым утеплителям для труднодоступных мест.
Какой утеплитель лучше: эковата, каменная вата или пенополистирол, смотрите в следующем видео:
- Автор: Игорь
- Распечатать
Оцените статью:
(5 голосов, среднее: 1.8 из 5)
Поделитесь с друзьями!
Что такое теплопроводность? Обзор
Теплопроводность (часто обозначаемая k, λ или κ) относится к внутренней способности материала передавать или проводить тепло. Это один из трех способов передачи тепла, два других — конвекция и излучение. Процессы теплопередачи можно количественно определить с помощью соответствующих уравнений скорости. Уравнение скорости в этом режиме теплообмена основано на законе теплопроводности Фурье.
Определяется также как количество тепла в единицу времени на единицу площади, которое может быть проведено через пластину единичной толщины из данного материала, поверхности которой отличаются на одну единицу температуры.
Теплопроводность возникает за счет молекулярного перемешивания и контакта и не приводит к объемному движению самого твердого тела. Тепло движется по температурному градиенту из области с высокой температурой и высокой молекулярной энергией в область с более низкой температурой и более низкой молекулярной энергией. Этот перенос будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие. Скорость передачи тепла зависит от величины температурного градиента и конкретных тепловых характеристик материала. {2}\))
\(T2{-}T1\) = градиент температуры (\(K\))
Изменение теплопроводности
Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся градиент температуры, свойства материала и длина пути, по которому следует тепло.
Теплопроводность окружающих нас материалов существенно различается: от материалов с низкой теплопроводностью, таких как воздух со значением 0,024 Вт/м•К при 0°C, до металлов с высокой проводимостью, таких как медь (385 Вт/м•К).
Теплопроводность материалов определяет, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, а материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно перемещать тепло от одного области в другую, как в кухонной утвари и системах охлаждения в электронных устройствах. Выбирая материалы с теплопроводностью, соответствующей применению, мы можем добиться наилучших возможных характеристик.
Теплопроводность и температура
В связи с тем, что движение молекул является основой теплопроводности, температура материала оказывает большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.
Способность понять влияние температуры на теплопроводность имеет решающее значение для обеспечения того, чтобы продукты вели себя должным образом при воздействии теплового стресса. Это особенно важно при работе с продуктами, выделяющими тепло, такими как электроника, и при разработке огнезащитных и теплозащитных материалов.
Теплопроводность и структура
Значения теплопроводности существенно различаются в зависимости от материала и сильно зависят от структуры каждого конкретного материала. Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена структура.
При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые вещества и металлические твердые вещества. Различные способности этих трех категорий с точки зрения передачи тепла можно объяснить различиями в их структурах и движениях молекул.
Газы имеют более низкую относительную теплопроводность, так как их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и молекулярной скорости.
Газы плохо передают тепло. Напротив, молекулы неметаллических твердых тел связаны в сеть решеток, и поэтому теплопроводность в основном возникает за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые вещества имеют более высокую теплопроводность из двух, однако внутри этой группы существуют большие различия.
Это изменение частично связано с количеством воздуха, присутствующего в твердом теле. Материалы с большим количеством воздушных карманов являются отличными изоляторами, а материалы с более плотной упаковкой будут иметь более высокое значение теплопроводности.
Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди всех материалов, за исключением графена, и обладают уникальным сочетанием тепло- и электропроводности. Оба этих атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако с повышением температуры теплопроводность материала будет расти, а электропроводность уменьшаться.
Испытание и измерение теплопроводности
Теплопроводность является важнейшим компонентом взаимосвязи между материалами, и способность понять ее позволяет нам добиться наилучших результатов от материалов, которые мы используем во всех аспектах нашей жизни. Эффективное тестирование и измерение теплопроводности имеют решающее значение для этой цели. Методы измерения теплопроводности можно разделить на стационарные и переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы стационарного состояния требуют, чтобы образец и эталонные образцы находились в тепловом равновесии до начала измерений. Переходные методы не требуют выполнения этого правила и поэтому дают результаты быстрее.
Исследовательские работы
Получение пористой муллитовой керамики с низкой теплопроводностью
В этом исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмалом порошка муллита, и анализируется изменение ее теплопроводности в зависимости от пористости керамики. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.
Нанографит/парафиновый материал с фазовым переходом и высокой теплопроводностью
Композиты нанографита (НГ)/парафина были приготовлены в качестве композиционных материалов с фазовым переходом. Добавление ПГ повысило теплопроводность композиционного материала. Материал, содержащий 10% NG, имел теплопроводность 0,9362 Вт/м•K
Ссылки:
Nave, R. HyperPhysics. «Теплопроводность». Государственный университет Джорджии.
Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1
Материалы курса NDT. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm
Williams, M. «Что такое теплопроводность?». Физ.орг. 9 декабря 2014 г.
Доступно по адресу: http://phys.org/news/2014-12-what-is-heat-conduction.html
Что вы подразумеваете под теплопроводностью? Получено из базы данных термических свойств материалов Definition of Thermal Conductivity
Thermtest . Список теплопроводностей
Сравнение теплопроводности меди, алюминия и латуни — Сборник экспериментов
Номер эксперимента: 1769
Цель эксперимента
Цель этого эксперимента — использовать термочувствительные пленки для визуализации различной динамики теплопроводности в трех различных металлах.
Теория
См. теорию в уже описанном эксперименте: Теплопроводность пластика и металла I., Теория.
Инструменты
Термочувствительная пленка с температурным диапазоном от 25°C до 30°C, три разные металлические пластины одинакового размера, емкость для горячей воды, чайник.
В пробном опыте используются медные, алюминиевые и латунные пластины одинаковых размеров; толщина пластин 0,3 мм. (Аналогичные металлические пластины можно приобрести в магазине дизайнерских инструментов). Таблица с теплопроводностями (при 25°C) используемых металлов приведена ниже:
металл λ / Вт·м −1 ·K −1 медь 386 алюминий 237 латунь 120 Термочувствительную пленку можно найти в Интернете под названием двусторонняя термоэтикетка . На рисунке 1 показан инструмент, изготовленный специально для этого эксперимента для изучения различной теплопроводности металла — три разные металлические пластины частично покрыты термочувствительной пленкой, что свидетельствует о повышении температуры.
Процедура
Закрепите медный, алюминиевый и латунный лист параллельно друг другу (см., например, рис. 1) с помощью лабораторного стенда так, чтобы концы листов находились на несколько сантиметров выше стола (рис. 2). ). Подставьте под эти концы емкость и налейте в нее горячую воду так, чтобы она покрыла концы листов.
Наблюдайте за изменением цвета термочувствительных пленок. Температура, представленная цветом, зависит от типа пленки. Пленка, использованная в этом эксперименте, имеет черный цвет при температуре ниже 25 °C. При повышении температуры в интервале от 25°С до 30°С пленка постепенно меняет свой цвет с коричневого, зеленого и синего на темно-синий и, наконец, после превышения 30°С цвет снова меняется на черный.
Целью такого изменения цвета этих пленок является не попытка точного измерения температуры в конкретной точке, а скорее указание и демонстрация распределения температуры поверхности.
Пример результата
Успешно проведенный эксперимент показан на видео ниже. Видео ускорено в 8 раз.
Очевидно, что медный лист нагревается быстрее всего, за ним следуют алюминий и латунь.
Технические примечания
Не наливать в емкость кипяток, использовать воду температурой 60 °C. При более высоких температурах образуется большое количество горячего пара, который течет вверх, что влияет на измерение с помощью термочувствительных пленок и делает его ненадежным.
Указанный выше эффект можно устранить, загнув нижние концы листов под прямым углом. Таким образом, более длинная часть измеряемых металлов может оставаться в горизонтальном положении.
Если вы проводите этот эксперимент летом, рекомендуется убедиться, что температура в классе ниже минимальной температуры, измеренной пленкой (здесь 25 °C). Если температура в классе выше, пленка меняет цвет на соответствующую температуру, делая результат менее заметным.
Нет необходимости использовать горячую воду для нагрева простыней. Однако всегда нужно следить за тем, чтобы простыни прогревались равномерно.
Педагогические заметки
Описание развития этого эксперимента приводит учащихся к выводу, что «медь нагревается быстрее, чем алюминий» и т. д. Более подготовленные ученики могут сообразить, что мы уже обсуждали «готовность ” вещества изменить температуру в разрезе удельной теплоемкости c вещества . Эта мысль верна и ее следует принять во внимание – готовность материи изменять свою температуру зависит как от удельной теплоемкости, так и от теплопроводности материи.
Аргумент о том, что быстрый нагрев медного листа вызван его низкой теплоемкостью, легко опровергается приведенной ниже таблицей:
металл λ / Вт·м −1 ·K −1 с / Дж·кг −1 ·K −1 медь 386 383 алюминий 237 896 латунь 120 384 Следовательно, если бы решающим фактором была удельная теплоемкость металла, то поведение меди и латуни было бы почти одинаковым (они имеют близкие значения c ), но это явно противоречит эксперименту.
Если в классе есть действительно одаренные физики, они могут возразить, что этот аргумент не совсем удовлетворителен – листы имеют разную плотность, а значит, и масса, влияющая на величину теплоты, необходимой для нагрева, тоже разная. К счастью, плотности меди и латуни достаточно близки, так что различное поведение этих двух веществ нельзя объяснить иначе, как на основании разной теплопроводности.
Эффект разной теплопроводности можно продемонстрировать не только при нагреве металлов, но и при их охлаждении. Дайте всем трем металлам прогреться, например, на радиаторе, пока термочувствительные пленки не станут темно-синими. Затем погрузите концы металлических листов в смесь воды и льда. Медь остывает быстрее всех, за ней следуют алюминий и латунь.
При интерпретации продолжения эксперимента следует остерегаться, чтобы не сложилось впечатление, что щиты «высасывают» холод изо льда – всегда нужно интерпретировать понижение температуры как отвод тепла.