Разное

Таблица коэффициент теплопроводности утеплителей: Теплопроводность утеплителей таблица

Содержание

Таблица теплопроводности утеплителей, сравнение характеристик материалов для дома

Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.

Главные параметры

Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.

Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Коэффициент сопротивления

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.

 

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:

Преимущества и недостатки

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Таблица теплопроводности и других качеств утеплителей, сравнение популярных материалов для теплоизоляции

Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.

Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.

Содержание

  • 1 Что такое теплопроводность?

    • 1. 1 Таблица теплопроводности утеплителей

    • 1.2 Полезные показатели утеплителей

  • 2 Кто на свете всех теплей?

    • 2.1 Пенополиуретан или экструдированный пенополистирол

    • 2.2 Минеральная вата или пенопласт

    • 2.3 Другие утеплители

  • 3 Выбирая утеплитель

Что такое теплопроводность?

Теплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.

В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.

Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.

Таблица теплопроводности утеплителей

В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.

Таблица теплопроводности утеплителей

  1. Утеплитель
Теплопроводность, Вт/(м*С)Плотность, кг/м3Паропроницаемость, мг/ (м*ч*Па)«+»«-»Горюч.
Пенополиуретан0,023320,0-0,052.Бесшовный монтаж пеной; 3. Долгосрочность; 4.Лучшая тепло-, гидроизоляция1.недешевый 2. Не устойчив к УФ-излучениюСамозатухающий
0,02940
0,03560
0,04180
Пенополистирол (пенопласт)0,038400,013-0,051.Отлично изолирует; 2. Дешевый; 3. Влагонепроницаем1. Хрупкий; 2. Не «дышит» и образует конденсатГ3 и Г4. Сопротивление возгоранию и самозатухание
0,041100
0,05150
Экструдированный пенополистирол0,031330,0131.Очень низкая теплопроводность; 3.Влагонепроницаем; 4.Прочен на сжатие; 5. Не гниет и не плесневеет; 6. Эксплуатация от -50 °С до +75°С; 7.Удобен в монтаже.1. На порядок дороже пенопласта; 2. Восприимчив к органическим растворителям; 3. Паропроницаемость низкая, образует конденсат.Г1 у марок с антипеновыми добавками, другие Г3 и Г4. Сопротивление возгоранию и самозатухание
Минеральная (базальтовая) вата0,048500,49-0,61.Хорошая паропроницаемость –«дышит»; 2.Противостоит грибкам; 3.Звукоизоляция; 4.Высокая термоизоляция; 5.Механическая прочность; 6.Не сыпется1.НедешевыйОгнеупорный
0,056100
0,07200
Стекловолокно (стекловата)0,041-0,044155-2000,51.Низкая теплопроводность; 2.При пожарах не выделяет токсичных веществ1.Со временем теплоизоляция снижается; 2.Может появляться плесень; 3.Проблемный монтаж: волокна осыпаются и наносят вред коже, глазам; 4.Паропроницаемость низкая, образует конденсат.Не горит
Пенопласт ПВХ0,0521250,0231. Жесткий и удобный в монтаже1.Недолговечен; 2.Плохая паропроницаемость и образование конденсатаГ3 и Г4. Сопротивление возгоранию и самозатухание
Древесные опилки0,07-0,182301.Дешевизна; 2.Экологичность1.Портиться и гниет; 2.Теплоизоляционные свойства падают при высокой влажностиПожароопасен

Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.

Полезные показатели утеплителей

На какие основные показатели нужно обратить внимание при выборе утеплителя:

  • Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
  • Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
  • Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
  • Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
  • Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
  • Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
  • Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
  • Долговечность определяет срок службы материала;
  • Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
  • Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.

Кто на свете всех теплей?

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

Минеральная вата или пенопласт

Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.

Другие утеплители

Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Выбирая утеплитель

Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».

  • Автор: Вадим Николаевич Лозинский

Типы

Применение

Общий коэффициент теплопередачи — U —

Вт/(м 2 К) БТЕ/(фут 2 или F h)
Трубчатые, нагревательные или охлаждающие Газ при атмосферном давлении внутри и снаружи труб 5 — 35 1 — 6
Газ высокого давления внутри и снаружи труб 150 — 500 25 — 90
Жидкость снаружи (внутри) и газ при атмосферном давлении внутри (снаружи) труб 15 — 70 3 — 15
Газ под высоким давлением внутри и жидкость снаружи труб 200 — 400 35 — 70
Жидкости внутри и снаружи труб 150 — 1200 25 — 200
Пар снаружи и жидкость внутри труб 300 — 1200 50 — 200
Трубчатый, конденсационный Пар снаружи и охлаждающая вода внутри труб 1500 — 4000 250 — 700
Органические пары или аммиак снаружи и охлаждающая вода внутри труб 300 — 1200 50 — 200
Трубчатый, испарительный пар снаружи и высоковязкая жидкость внутри труб, естественная циркуляция 300 — 900 50 — 150
пар снаружи и маловязкая жидкость внутри труб, естественная циркуляция 600 — 1700 100 — 300
пар снаружи и жидкость внутри труб, принудительная циркуляция 900 — 3000 150 — 500
Теплообменники с воздушным охлаждением Охлаждение воды 600 — 750 100 — 130
Охлаждение жидких легких углеводородов 400 — 550 70 — 95
Охлаждение смолы 30 — 60 5 — 10
Охлаждение воздуха или дымовых газов 60 — 180 10 — 30
Охлаждение углеводородного газа 200 — 450 35 — 80
Конденсация пара низкого давления 700 — 850 125 — 150
Конденсация органических паров 350 — 500 65 — 90
Пластинчатый теплообменник жидкость в жидкость 1000 — 4000 150 — 700
Спиральный теплообменник жидкость в жидкость 700 — 2500 125 — 500
конденсация пара в жидкость 900 — 3500 150 — 700

Нагреватели (без фазового перехода)

Горячая жидкость Холодная жидкость Общий U
(БТЕ/час-фут 2 -F)
Пар Воздух 10 – 20
Пар Вода 250 – 750
Пар Метанол 200 – 700
Пар Аммиак 200 – 700
Пар Водные растворы 100 – 700
Пар Легкие углеводороды
(вязкость < 0,5 сП)
100 – 200
Пар Средние углеводороды
(0,5 сП < вязкость < 1 сП)
50 – 100
Пар Тяжелые углеводороды
(вязкость > 1)
6 – 60
Пар Газы 5 – 50
Даутерм Газы 4 – 40
Даутерм Тяжелые масла 8 – 60
Дымовые газы Ароматические углеводороды и пар 5 – 10

Испарители

Горячая жидкость Холодная жидкость Общий U
(БТЕ/час-фут 2 -F)
Пар Вода 350 – 750
Пар Органические растворители 100 – 200
Пар Легкие масла 80 – 180
Пар Тяжелые масла (вакуум) 25 – 75
Вода Хладагент 75 – 150
Органические растворители Хладагент 30 – 100

Охладители (без фазового перехода)

Холодная жидкость Горячая жидкость Общий U
(БТЕ/час-фут 2 -F)
Вода Вода 150 – 300
Вода Органический растворитель 50 – 150
Вода Газы 3 – 50
Вода Легкие нефтепродукты 60 – 160
Вода Тяжелые масла 10 – 50
Легкое масло Органический растворитель 20 – 70
Рассол Вода 100 – 200
Рассол Органический растворитель 30 – 90
Рассол Газы 3 – 50
Органические растворители Органические растворители 20 – 60
Тяжелые масла Тяжелые масла 8 – 50

Конденсаторы

Холодная жидкость Горячая жидкость Общий U
(БТЕ/час-фут 2 -F)
Вода Пар (давление) 350 -750
Вода Пар (вакуум) 300 – 600
Вода или рассол Органический растворитель (насыщенный, атмосферный) 100 – 200
Вода или рассол Органический растворитель (атмосферный, с высокой степенью неконденсации) 20 – 80
Вода или рассол Органический растворитель (насыщенный, вакуум) 50 – 120
Вода или рассол Органический растворитель (вакуум, высокая степень неконденсации) 10 – 50
Вода или рассол Ароматические пары (атмосферные с неконденсируемыми) 5 – 30
Вода Низкокипящий углеводород (атмосферный) 80 – 200
Вода Высококипящий углеводород (вакуум) 10 – 30

без фазового перехода

Жидкость Коэффициент пленки
(БТЕ/час-фут 2 -F)
Вода 300 – 2000
Газы 3 – 50
Органические растворители 60 – 500
Масла 10 – 120

Конденсация

Жидкость Коэффициент пленки
(БТЕ/час-фут 2 -F)
Пар 1000 – 3000
Органические растворители 150 – 500
Легкие масла 200 – 400
Тяжелые масла (вакуум) 20 – 50
Аммиак 500 – 1000

Metal, Metallic Element or Alloy Temperature
— t —
( o C)

Thermal Conductivity
— k —
(Вт/м·К)
Алюминий -73 237
» 0 236
» 127 240
» 327 232
» 527 220
Алюминий – дюралюминий (94–96 % Al, 3–5 % Cu, следы Mg) 20 164
Алюминий – силумин (87 % Al, 13 % Si)
Aluminum bronze 0 — 25 70
Aluminum alloy 3003, rolled 0 — 25 190
Aluminum alloy 2014. annealed 0 — 25 190
Aluminum alloy 360 0 — 25 150
Antimony -73 30.2
» 0 25.5
» 127 21.2
» 327 18.2
» 527 16.8
Beryllium -73 301
» 0 218
« 127 161
» 327 126
1260094 527 107
» 727 89
» 927 73
Beryllium copper 25 0 — 25 80
Bismuth — 73 9. 7
» 0 8.2
Boron -73 52.5
» 0 31.7
» 127 18.7
» 327 11.3
» 527 8.1
» 727 6.3
» 927 5.2
Cadmium -73 99.3
» 0 97.5
» 127 94.7
Cesium -73 36.8
» 0 36.1
Chromium -73 111
» 0 94.8
» 127 87. 3
» 327 80.5
» 527 71.3
» 727 65.3
» 927 62.4
Cobalt -73 122
» 0 104
» 127 84.8
Copper -73 413
» 0 401
» 127 392
» 327 383
» 527 371
» 727 357
» 927 342
Copper, electrolytic (ETP) 0 — 25 390
Copper — Admiralty Brass 20 111
Copper — Aluminum Bronze (95% Cu, 5% Al) 20 83
Copper — Bronze (75% Cu, 25% Sn) 20 26
Copper — Желтая латунь) (70% Cu, 30% Zn) 20 111
Медная — картриджская латунь (UNS C26000) 20 120
COPPE 40% Ni) 20 22,7
Copper — German Silver (62% Cu, 15% Ni, 22% Zn) 20 24. 9
Copper — Phosphor bronze (10% Sn, UNS C52400) 20 50
Copper — Red Brass (85% Cu, 9% Sn, 6%Zn) 20 61
Cupronickel 20 29
Germanium -73 96.8
« 0 66.7
» 127 43.2
» 327 27.3
» 527 19.8
» 727 17.4
» 927 17.4
Gold -73 327
» 0 318
» 127 312
» 327 304
» 527 292
» 727 278
» 927 262
Hafnium -73 24. 4
» 0 23.3
» 127 22.3
» 327 21.3
» 527 20.8
» 727 20.7
» 927 20.9
Hastelloy C 0 — 25 12
Inconsel 21 — 100 15
INCOLOY 0–10074

.0061

12
Indium -73 89.7
» 0 83.7
» 127 75.5
Iridium -73 153
» 0 148
» 127 144
» 327 138
» 527 132
» 727 126
» 927 120
Iron -73 94
» 0 83. 5
» 127 69.4
» 327 54.7
» 527 43.3
» 727 32.6
» 927 28.2
Iron — Cast 20 52
Iron — Nodular pearlitic 100 31
Железо — сочинение 20 59
Свинец -73 36.6
36.6
36.6
-0075

» 0 35.5
» 127 33.8
» 327 31.2
Chemical lead 0 — 25 35
Antimonial lead (hard lead) 0 — 25 30
Lithium -73 88. 1
» 0 79.2
» 127 72.1
Magnesium -73 159
» 0 157
» 127 153
» 327 149
» 527 146
Magnesium alloy AZ31B 0 — 25 100
Manganese -73 7.17
» 0 7.68
Mercury -73 28.9
Molybdenum -73 143
» 0 139
« 127 134
» 327 126
. 4 527 118
» 727 112
» 927 105
Monel 0 – 100 26
Nickel -73 106
» 0 94
» 127 80.1
» 327 65.5
» 527 67.4
» 727 71.8
» 927 76.1
Nickel — Wrought 0 – 100 61 – 90
Cupronickel 50 -45 (Constantan) 0 — 25 20
Niobium (Columbium) -73 52.6
» 0 53.3
» 127 55. 2
» 327 58.2
» 527 61.3
» 727 64.4
» 927 67.5
Osmium 20 61
Palladium 75.5
Platinum -73 72.4
» 0 71.5
» 127 71.6
» 327 73.0
» 527 75.5
» 727 78.6
» 927 82.6
Plutonium 20 8.0
Potassium -73 104
» 0 104
» 127 52
Red brass 0 — 25 160
Rhenium -73 51
» 0 48. 6
» 127 46.1
» 327 44.2
» 527 44.1
» 727 44.6
» 927 45.7
Rhodium -73 154
« 0 151
» 127 146

9444949494949494949494949494

127 127 127

94

327 136
» 527 127
» 727 121
» 927 115
Rubidium -73 58.9
» 0 58. 3
Selenium 20 0.52
Silicon -73 264
» 0 168
» 127 98.9
» 327 61.9
» 527 42.2
» 727 31.2
» 927 25.7
Silver -73 403
» 0 428
» 127 420
» 327 405
» 527 389
» 727 374
» 927 358
Sodium -73 138
» 0 135
Solder 50 — 50 0 — 25 50
Steel — Carbon, 0. 5% C 20 54
Steel — Carbon, 1% C 20 43
Сталь — углерод, 1,5% C 20 36
» 400 36
»9009

0099009

0097

097

0

0

0

0

0

0

09009ра9009ра

09ра

09009ра

09009ра9009ра

09009ра

09009ра

09ра

0

09ра9009ра

09009ра9. . 0099009
.0094 Steel — Chrome, 1% Cr 20 61
Steel — Chrome, 5% Cr 20 40
Steel — Chrome, 10% Cr 20 31
Сталь — хромкель, 15% CR, 10% NI 20 19
Сталь — хром -никель, 20% CR, 15% NI 20 15. 1
20 10
Сталь — Hastelloy C 21 8,7
Сталь — Никель, 10% NI 20 2699009.

20.9009 20.9009 209009 20.9009

9.9009.9009.9009.9009

9.9009.9009.

9009 20.9009

20.0009

Steel — Nickel, 40% Ni 20 10
Steel — Nickel, 60% Ni 20 19
Steel — Nickel Chrome, 80% Ni, 15% Ni 20 17
Steel — Nickel Chrome, 40% Ni, 15% Ni 20 11.6
Steel — Manganese, 1% Mn 20 50
Steel — Нержавеем, тип 304 20 14,4
Сталь — нержавеющий, тип 347 20 14,3
Сталь — Тунгстен, 1% W

9494999999999999999999999999999999997

0900

0900
. 0094 Steel — Wrought Carbon 0 59
Tantalum -73 57.5
» 0 57.4
» 127 57.8
» 327 58.9
» 527 59.4
» 727 60.2
» 927 61
Thorium 20 42
Tin -73 73.3
» 0 68.2
» 127 62.2
Titanium -73 24,5
» 0 22,4
» 12777794949477
« 1277947794779494779477
» 12777779477794947794779494794777
«

12,4
»

12,4
» 327 19. 4
» 527 19.7
» 727 20.7
» 927 22
Tungsten -73 197
» 0 182
» 127 162
» 327 139
» 527 128
» 727 121
» 927 115
Uranium -73 25.1
« 0 27
» 127 29,6
« 32799999949494944444444444444444444444444444444444444444444444444 400949444444444444444444444 40094

»
«
»
«. 0074

» 527 38.8
» 727 43.9
» 927 49
Vanadium -73 31.5
» 0 31.3
« 427 32.1
» 327 34.2
327 34.2
36.3
» 727 38.6
» 927 41.2
Zinc -73 123
» 0 122
« 127 116
» 327 105
Zirconium-73

-73

994-73

994 -7 3

9999999999999999999999

» 0 23.2
» 127 21.6
» 327 20.7
» 527 21.6
» 727 23,7
» 927 25,7