Разное

Теплый пол водяной расчет трубы: как рассчитать трубы на водяной теплый пол

Содержание

Расчет трубы на теплый пол водяной

Содержание статьи

  • Подготовительные работы
  • Ответы на основные вопросы
  • Расчет тепловых потерь
  • Расчет количества труб водяного теплого пола
  • Дополнительные расчеты и подведение итогов

Если узнать, как рассчитать теплый пол, то можно выяснить не только количество необходимых материалов. Это поможет спроектировать и создать такую систему отопления, которая будет выполнять свои функции в полном объеме, с учетом определенных условий эксплуатации и достаточно экономично.

Подготовительные работы

Прежде чем выяснять, как рассчитать теплый водяной пол, надо произвести общую оценку объекта недвижимости. Пригодятся планы помещений. Если их нет, придется самому составить соответствующую конструкторскую документацию в удобном для пользователя масштабе.

Следует понимать, что чем меньше по размерам будет создаваться такая система обогрева по отношению к общей площади квартиры (дома),  тем выше будут общие расходы. Это связано с необходимостью установки специального дополнительного оборудования (насоса, распределительного устройства, термодатчика и др.).

Рекомендуем ознакомиться: Пример расчета гидравлической системы отопления.

Для точного проектирования пригодятся следующие сведения:

  • Климатические условия, расположение стен помещений относительно сторон света. Эти данные при их наличии помогут точнее определиться с внешними условиями. Для упрощен6ых расчетов достаточно знать, какую температуру планируется поддерживать в помещении и какими бывают наиболее сильные морозы в данном регионе.      
  • Планы всех помещений и конструкция стен/перекрытий в разрезе.
  • Материалы, которые использованы для строительства основных конструкций и утепления, облицовки.
  • Вид остекления окон и тип дверей (входных групп). 
  • Расположение сантехники, мебели, иных стационарных предметов в комнатах.
  • Целевое предназначение теплого пола. В дальнейшем мы будем рассматривать данную систему, как основной источник тепла. На самом деле вы можете использовать любые, в том числе и комбинированные индивидуальные решения (с радиаторами, электрическими нагревателями, каминами и другие).

Эти и другие советы являются общими, поэтому использовать их на практике следует разумно. Так, например, под стационарной мебелью теплый пол не советуют монтировать. Однако если встроенный шкаф будет устанавливаться около наружной стены, то для исключения образования внутри него сырости лучше установить под ним систему обогрева.

Ответы на основные вопросы

Приведем данные, которые достаточно часто интересуют обычных людей, которые решили сами заняться созданием теплых полов:

  • Температура  на поверхности напольного покрытия выбирается в зависимости от целевого назначения комнаты:
  • прихожие, входные группы – от +29°С до +30°С;
  • обычные жилые помещения, рабочие кабинеты – от +27°С до +29°С;
  • тренажерные залы, иные комнаты, в которых предполагаются физически активные действия – от +17°С до +19°С;
  • ванные комнаты, душевые – около +32°С.
  • части помещений около внешних стен окон – от +30°С до +35°С.
  • Температура теплоносителя в системе данного типа поддерживается меньше, чем при работе со стандартными радиаторами отопления. Ее не рекомендуется снижать менее +40°С и повышать более +60°С.
  • Разница значений температур в обратной и прямой магистрали  не должна быть более 15-ти градусов Цельсия. Если это правило не соблюдать, то будет слишком ощутимым перепад температуры на площади, что вызовет определенный дискомфорт. 
  • Если пытаться поддерживать разницу на входе и выходе не более 5-ти градусов, то затраты возрастут чрезмерно, придется поддерживать слишком большое давление в системе.
  • Чтобы тепловые и гидравлические нагрузки в системе теплого пола были сбалансированными необходимо не превышать количество метров в каждом отдельном нагревательном контуре. Ниже приведем данные, где указано максимально допустимая длина в зависимости от диаметра труб:
  • от 100 до 120м – d 20 мм;
  • от 80 до 100м – d 18 мм;
  • от 60 до 800м – d 16 мм.

  • Если в одном помещении понадобится большая длина, то создается дополнительный контур, который подключается отдельно к распределительному устройству.
  • Шаг укладки труб выбирается в диапазоне от 100 до 300 мм. Его изменение можно использовать для создания более или менее теплых зон. Так, около окон можно  уменьшить расстояние между витками до 100 мм. На практике придется учитывать материал, из которого изготовлены трубы, его способность сохранять целостность при малых радиусах поворотов. Слишком большой шаг и близость к поверхности не позволит обеспечить равномерный прогрев. 
  • В большинстве случаев для создания самого теплого пола выбирают трубы, диаметр которых не превышает 18 мм. С такими изделиями проще работать. Они будут выполнять свои функции при относительно небольшом количестве теплоносителя. Для подключения системы к распределителю используют более крупные трубы (25 мм).    
  • Коллектор размещают таким образом, чтобы от него было примерно одинаковое расстояние до каждого контура. Если разница слишком велика – равномерное прохождение жидкости можно будет установить точно с помощью специального устройства (расходомера).   
  • Для каждой распределительной группы используется один насос. К одному коллектору подсоединяют не более восьми контуров максимальной длины.
  • Если после вычислений стало ясно, что расход теплоносителя при минимальной работоспособности составляет менее 25 л/час, то необходимо произвести объединение нескольких контуров. В противном случае пол не будет прогреваться равномерно.

Расчет тепловых потерь

Необходимо выяснить вначале, можно ли определенное здание отапливать только с использованием данного инженерного решения. Теплого пола будет достаточно, если тепловые потери в период эксплуатации не превышают 100 Вт с одного квадратного метра площади. Соответствующие расчеты можно произвести самостоятельно полностью. Но в них придется применять слишком большое количество формул. Чтобы упростить решение этой задачи можно использовать специальные калькуляторы. Эти программы можно найти на нашем сайте.

Если тепловые потери в итоге получились выше упомянутого значения, то понадобится улучшать изоляционные свойства объекта недвижимости. Можно запланировать также установку дополнительной системы отопления, но надо понимать, что в этом случае существенно будут увеличены затраты в период эксплуатации.

Расчет количества труб водяного теплого пола

Узнать точно, сколько трубы надо на 1м2 теплого пола понадобиться для оснащения всех комнат объекта недвижимости, проще с помощью специализированных калькуляторов. Но в любом случае понадобятся цифры по тепловым потерям. Предположим, что после завершения вычислений они составили 80 Вт/м. кв. Допустим, что общая площадь квартиры – 80 м. кв. Таким образом, общие теплопотери составят: 80 х 80 = 6 400 Вт. Их надо будет компенсировать с помощью системы отопления, мощность которой создается большей на 15-20%.

Специалисты часто используют на стандартных жилых объектах расстояние между трубами 150 мм (диаметр 16 мм). Такая укладка позволяет с одного квадратного метра площади получать около 100 Вт, чего для нашего случая вполне достаточно. Если разделим общую площадь  на шаг, то получим:  80/0,15 = 533 м. Следует учесть, что около наружных стен соответствующее расстояние будет меньше (100 мм). Внеся коррективы, можно получить, сколько точно метров трубы понадобится. Таким же образом можно рассчитать, какова будет длина каждого отдельного контура.

Следует учесть, что трубы (металлопластиковые, полиэтиленовые и сделанные из гофрированной стали) предлагаются в бухтах стандартных размеров. Их длина может составлять от 50 до 240 метров. Также понадобится приобрести трубы другого диаметра для присоединения контуров к коллектору. Здесь надо будет сложить соответствующие расстояния.

Дополнительные расчеты и подведение итогов

Чтобы правильно выбрать марку насоса, необходимо знать, какое давление он должен создавать для циркуляции жидкости по всем контурам. Поэтому вначале надо выяснить каковы будут гидравлические потери в системе. Приведем пример гидравлического расчета системы отопления:

  • Для прямого участка трубы 16 мм с толщиной стенок 2 мм на 10 метров потери составят  1 600 Па.
  • Каждый поворот в обратном направлении (на 180°) – это дополнительно 40 Па.
  • Для комнаты 18 м. кв. (6 х 3 м) при укладке «змейкой» общие гидравлические потери (ГП) будут рассчитаны так:
  • количество прямых участков: 3(ширина) / 0,15 (шаг) = 20;
  • ГП прямых участков: 20 х 5,6 (длина) х  160 = 17 920 Па;
  • ГП поворотов: 19 х 40 = 760;
  • ГП общие: 760 + 17 920 = 18 680 Па.

При использовании трубы диаметром 16 мм для нормальной работы теплого пола потребуется прокачивать через систему не менее 2,4 литра в час на 1 м. длины. Точный  расчет производительности производят по формуле: РТН (расход теплоносителя) = 0,86 х  МК (мощность контура отопления в кВт)/ РТ (разница температур в подающем и приемном участке трубопровода). Для нашей комнаты потребуется насос, способный перекачивать 0,172 метров куб. в час (0,86 х  2 /10).

В общих расчетах суммируют гидравлические потери не только в трубах, но и в других элементах системы. Таким же образом выясняют необходимую общую производительность перекачивающего оборудования. Итоговые цифры используют при выборе подходящей модели насоса.

В этой статье описано подробно, как рассчитать теплый водяной пол самостоятельно. Упростить вычисления можно с помощью специализированного программного обеспечения.

Читайте также

  • Утепление пола пенофолом в деревянном доме

  • Основные типы электрических котлов для теплого пола

  • Медная труба для теплого пола

  • Укладка теплого пола под плитку своими руками

Расчет водяного теплого пола: примеры самостоятельного расчета



Теплые полы / 14. 10.2014


Расчет водяного теплого пола предполагает вычисление мощности отопительного контура, достаточной для нивелирования тепловых потерь жилища. Попутно в процессе расчетов определяются и геометрические параметры контура – длина и диаметр труб, а равно и скорость циркуляции теплоносителя в системе.

Итогом расчетов будет формирование схемы укладки контура на полу отапливаемого помещения и составление сметы процесса обустройства «теплого» пола. Проще говоря: рассчитав пол, мы вычислим схему укладки и метраж труб нагревательного контура, попутно определив еще и  объемы бетонной стяжки, погонаж демпферной прокладки и прочие параметры.

Водяной теплый пол

Словом, без точного расчета строительство такой отопительной системы попросту невозможно. Поэтому  в данной статье мы познакомим вас с процессом расчета мощности, гидравлики и геометрии теплого пола.

Вводные данные

Любой расчет начинается с определения типа будущей системы отопления. Ведь теплый пол может работать и в формате основного отопления, и в роли контура комбинированной системы, где помимо него есть еще и традиционная разводка с радиаторами. Разумеется, оба случая требуют совершенно разного подхода к процессу проектирования.

В первом случае нужно рассчитать полноценную систему отопления, способную компенсировать все тепловые потери жилища. А во втором – рассчитать контур, нагревающий пол в «зоне комфорта» до температуры 35-37 градусов Цельсия. То есть мощность систем будет абсолютно разной.

Кроме того в расчетах придется учесть следующие нюансы:

Преимущества водяного теплого пола

  • Климатические данные – эта информация пригодится для определения среднегодовой и пиковой температуры.
  • Планы строения – они пригодятся для определения площади и объема отапливаемых помещений.
  • Сведения о теплостойкости строительных материалов – они пригодятся в процессе определения тепловых потерь жилища.

Помимо этого нужно обратить внимание на расположение и габариты окон, схему расстановки предметов меблировки и напольного текстиля (ковров, паласов и прочего).

В итоге, перед началом расчетов необходимо подготовить план отапливаемого помещения и собрать климатические данные и оценить степень утепления жилища.

Расчет мощности теплого пола

Суть расчета мощности сводится к сопоставлению тепловых потерь дома, расположенного в определенной климатической зоне с энергией, вырабатываемой отопительным контуром. Причем энергия и потери связаны следующей формулой:

Мп=1,2Q

Где Мп – это искомая тепловая мощность пола, Q – это тепловые потери, а 1,2 – это максимальное значение коэффициента запаса, которое изменяется в пределах от 1 до 1,2.

Таким образом, для определения мощности пола нам нужно всего лишь вычислить тепловые потери, определяемые по следующей формуле:

Q=(V*Pt*k)/860

Где V – это объем отапливаемого помещения (площадь, умноженная на высоту потолков), Pt – это разница температур в доме и за его стенами (вычисляется исходя из комфортных 20 градусов Цельсия и температуре самого сильного заморозка), а k – это коэффициент «теплостойкости» жилища (обычно он равен 1,5-2).

Схема укладки слоев теплого пола

Впрочем, если такой пример расчета теплого пола по мощность с помощью формул покажется сложным, то вместо вычислений можно просто воспользоваться специальной программой ( ПО Valtec или его аналоги). Для вычисления мощности в данном случае придется указать температуру самого жестокого заморозка, длину и ширину отапливаемой зоны, месторасположение дома (по области и городу), высоту потолков и тип основного строительного материала жилища (древесина, кирпич и так далее) с толщиной стен.

Итоги работы программы не будут отличаться от «формульных» вычислений.

Расчёт трубы для тёплого пола

Трубы для пола можно рассчитать исходя из ожидаемой мощности системы отопления, сопоставив площадь «развертки» нагревательного элемента (трубы) с температурой теплоносителя.

Однако эта схема сулит долгие вычисления, в которых используются табличные коэффициенты и переменные. Поэтому в большинстве случаев расчет труб проводится «графически».

То есть, на миллиметровой бумаге, поверх эскиза жилища, или прямо на полу отапливаемой зоны вычерчивается контур будущего «нагревательного элемента» (трубы), выстраиваемый по следующим правилам:

Трубы для пола

  • Максимальная длинна трубы в нагревательном контуре – 100-120 метров. Причем труба должна выйти из напорного коллектора и войти в обратку без стыков и разрывов в теле арматуры (цельным мерным отрезком).
  • Шаг размещения труб в спирали контура – 10-15 сантиметров.
  • Диаметр трубы – 16 миллиметров. По этому параметру определяется и толщина стяжки – 6 сантиметров.

Температуру теплоносителя в системе и его скорость определяют по усредненным величинам:

  • 40-55 градусам Цельсия — этого достаточно для прогрева зоны отопления до 25-37 °С.
  • 13-15 кПа — такая потеря давления в контуре обеспечит снижение температуры теплоносителя на выходе из контура на 5-15 °С.
  • 27-30 литрам в час —  это оптимальный расход теплоносителя в контуре с пропускным диаметром 16 миллиметров.

В финале «графического» расчета отопительного контура нужно определить месторасположение выхода из коллектора системы отопления и входа в обратку.

Ну а смета системы отопления «теплый пол» считается исходя из погонажа труб и объема бетонной стяжки.

Кроме того ее дополняют и расходы на термоизоляционную подложку и облицовочную отделку стяжки, рассчитываемые по общей площади теплого пола.



пример расчета водяной системы теплых полов

На эффективность теплого пола влияет множество факторов. Без их учета, даже если система правильно смонтирована и для ее монтажа использованы самые современные материалы, реальная теплоэффективность не оправдает ожиданий.

По этой причине монтажным работам должен предшествовать грамотный расчет теплого пола, и только тогда можно гарантировать хороший результат.

Проектирование системы отопления дело недешевое, поэтому многие домашние мастера производят расчеты самостоятельно. Согласитесь, идея удешевления обустройства теплого пола кажется очень заманчивой.

Мы расскажем, как создать проект, какие критерии учитывать при выборе параметров системы отопления и распишем пошаговый порядок расчета. Для наглядности мы подготовили пример расчета теплого пола.

Содержание статьи:

  • Исходные данные для расчета
  • Определение параметров теплого пола
    • Методика расчета теплопотерь
    • Пример расчета бетона
    • Необходимое тепло для обогрева воздуха
  • Расчет необходимого количества труб
  • Рассчитываем циркуляционный насос
  • Советы по выбору толщины стяжки
  • Выводы и полезное видео по теме

Исходные данные для расчет

Изначально правильно спланированный ход проектно-монтажных работ избавит от неожиданностей и неприятных проблем в будущем.

При расчете теплого пола необходимо исходить из следующих данных:

  • материал стен и конструктивные особенности;
  • размер помещения на плане;
  • тип отделки;
  • проектирование дверей, окон и их размещение;
  • расположение элементов конструкции в плане.

Для грамотного проектирования необходимо учитывать установленный температурный режим и возможность его регулировки.

Для грубого расчета принято, что 1 м 2 Система отопления должна компенсировать потери тепла в 1 кВт. Если водяной контур отопления используется как дополнение к основной системе, то требуется покрыть только часть теплопотерь

Приведены рекомендации по температуре на полу, обеспечивающие комфортное пребывание в помещениях различного назначения:

  • 29°С — жилой сектор;
  • 33°С — баня, помещения с бассейном и другие с повышенным показателем влажности;
  • 35°С — холодные зоны (у входных дверей, наружных стен и т.п.).

Превышение этих значений влечет за собой перегрев как самой системы, так и финишного покрытия с последующим неизбежным повреждением материала.

После предварительных расчетов можно выбрать оптимальную по личным ощущениям температуру теплоносителя, определить нагрузку на отопительный контур и приобрести насосное оборудование, прекрасно справляющееся со стимуляцией движения теплоносителя. Подбирается с запасом расхода теплоносителя 20%.

Прогрев стяжек мощностью более 7 см занимает много времени. Поэтому при установке водяных систем стараются не превышать указанный лимит. Напольная керамика считается наиболее подходящим покрытием для водяных полов. Теплый пол не подходит под паркет из-за его сверхнизкой теплопроводности.

На этапе проектирования следует решить, будет ли теплый пол основным поставщиком тепла или будет использоваться только как дополнение к ветке радиаторного отопления. От этого зависит доля потерь тепловой энергии, которую ему приходится компенсировать. Он может варьироваться от 30% до 60% с вариациями.

Время прогрева водяного пола зависит от толщины элементов, входящих в стяжку. Вода как теплоноситель очень эффективна, но сама система сложна в монтаже.

Фотогалерея

Фото

Для выполнения расчетов системы водоснабжения, теплого пола в первую очередь производят расчеты теплопотерь, которые должны компенсировать контур. Если это дополнительная система, то учитывается часть теплопотерь.

Расчеты производятся только для той части пола, на которой будет располагаться нагревательный змеевик. Участки, где трубы не проложены, например, под мебелью, в расчетах не учитываются

Для проведения расчетов необходимы средние значения температуры теплоносителя на выходе из коллекторного устройства и на возврате на вход

Для получения точного результата необходимо знать теплопроводность планируемых к прокладке труб и ориентировочная длина отопительного контура

Водяной теплый пол в деревянном доме

Вариант расположения водяного контура

Коллектор и трубопровод системы отопления

Медный контур теплого пола

Определение параметров теплого пола

Цель расчета — получение величины тепловой нагрузки. Результат этого расчета влияет на следующие шаги. В свою очередь, на тепловую нагрузку влияет средняя зимняя температура в конкретном регионе, расчетная температура внутри помещений, коэффициент теплопередачи потолка, стен, окон и дверей.

Причиной теплопотерь является плохо утепленные стены, окна, двери дома. Наибольший процент тепла уходит через систему вентиляции и крышу (+)

Окончательный результат расчетов по типу воды будет зависеть от наличия дополнительных отопительных приборов, в том числе от теплоотдачи проживающих в доме людей и домашних животных. Обязательно учитывают в расчете наличие инфильтрации.

Одним из важных параметров является конфигурация комнат, поэтому вам нужен поэтажный план дома и соответствующие разрезы.

Метод расчета теплопотерь

Определив этот параметр, вы узнаете, сколько тепла должен вырабатывать пол для самочувствия людей, находящихся в помещении, сможете подобрать котел, насос и пол по мощности. Другими словами: тепло, отдаваемое отопительными контурами, должно компенсировать теплопотери здания.

Связь между этими двумя параметрами выражается формулой:

Mp = 1,2 x Q где

  • Mp — требуемая мощность шлейфа;
  • Q — потери тепла.

Для определения второго показателя оформляются замеры и расчеты площади окон, дверей, полов, наружных стен. Так как пол будет с подогревом, площадь данной ограждающей конструкции не учитывается. Замеры производятся снаружи с захватом углов здания.

При расчете будет учитываться как толщина, так и коэффициент теплопроводности каждой из конструкций. Нормативные значения (λ) для наиболее часто используемых материалов можно взять из таблицы.

Из таблицы можно взять значение коэффициента для расчета. Значение термического сопротивления материала важно узнать у поставщика, если окна металлопластиковые (+)

Расчет теплопотерь выполняется отдельно для каждого элемента здания по формуле :

Q = 1 / R * (tv-tn) * S x (1 + ∑b) где

  • R — термическое сопротивление материала, из которого изготовлена ​​ограждающая конструкция;
  • S — площадь конструктивного элемента;
  • тв и тн — температура соответственно внутренняя и внешняя, при этом второй показатель принимается по наименьшему значению;
  • б — дополнительные теплопотери, связанные с ориентацией здания относительно сторон света.

Показатель термического сопротивления (R) находится путем деления толщины конструкции на коэффициент теплопроводности материала, из которого она изготовлена.

Значение коэффициента b зависит от ориентации дома:

  • 0,1 — север, северо-запад или северо-восток;
  • 0,05 — запад, юго-восток;
  • 0 — юг, юго-запад.

Если рассмотреть вопрос на любом примере расчета водяного теплого пола, он становится более понятным.

Пример расчета бетона

Допустим, стены дома для временного проживания толщиной 20 см выполнены из газобетонных блоков. Общая площадь ограждающих стен без оконных и дверных проемов 60 м². Температура снаружи -25°С, внутри +20°С, постройка ориентирована на юго-восток.

Учитывая, что теплопроводность блоков λ = 0,3 Вт/(м°*С), можно рассчитать потери тепла через стены: R = 0,2/0,3 = 0,67 м²°С/Вт.

Потери тепла также наблюдаются через слой штукатурки. Если его толщина 20 мм, то Rшт. = 0,02/0,3 = 0,07 м²°С/Вт. Сумма этих двух показателей даст значение теплопотерь через стены: 0,67 + 0,07 = 0,74 м²°С/Вт.

Имея все исходные данные, подставляем их в формулу и получим теплопотери помещения с такими стенами: Q = 1/0,74 * (20 — (-25)) * 60 * (1 + 0,05) = 3831,08 Вт.

Таким же образом тепловые потери рассчитываются через остальные ограждающие конструкции: окна, дверные проемы, кровлю.

Тепла, выделяемого отопительными контурами, может не хватить для нагрева воздуха внутри дома до нужного значения, если их мощность недооценена. При превышении мощности произойдет перелив теплоносителя

Для определения теплопотерь через перекрытие его термическое сопротивление принимают равным значению для планируемого или существующего вида утепления: R = 0,18/0,041 = 4,39 м²°С/ W.

Площадь потолка равна площади пола и составляет 70 м². Подставив эти значения в формулу, получим потери тепла через верхнюю ограждающую конструкцию: Qпот. = 1/4,39* (20 — (-25)) * 70 * (1 + 0,05) = 753,42 Вт.

Чтобы определить потери тепла через поверхность окон, нужно рассчитать их площадь. При наличии 4 окон шириной 1,5 м и высотой 1,4 м их общая площадь составит: 4 * 1,5 * 1,4 = 8,4 м².

Если изготовитель указывает отдельно термическое сопротивление для стеклопакета и профиля — 0,5 и 0,56 м²°С/Вт соответственно, то Рокон = 0,5*90+0,56*10)/100 = 0,56 м²°С/Вт. Здесь 90 и 10 — доли, приходящиеся на каждый оконный элемент.

На основании полученных данных продолжаются дальнейшие расчеты: Q окна = 1/0,56 * (20 — (-25)) * 8,4 * (1 + 0,05) = 708,75 Вт.

Наружная дверь имеет площадь 0,95 * 2,04 = 1,938 м². Потом РДВ. = 0,06/0,14 = 0,43 м² °С/Вт. Q дв. = 1 / 0,43 * (20 — (-25)) * 1,938 * (1 + 0,05) = 212,95 Вт.

Поскольку наружные двери часто открываются, через них теряется много тепла. Поэтому важно обеспечить их герметичное закрытие

В результате тепловые потери составят: Q = 3831,08 +753,42 + 708,75 + 212,95 + 7406,25 = Вт.

К этому результату добавляются дополнительные 10% на инфильтрацию воздуха, тогда Q = 7406,25 + 740,6 = 8146,85 Вт.

Теперь можно определить тепловую мощность пола: Mp = 1, * 8146,85 = 9776,22 Вт или 9,8 кВт.

Необходимое количество тепла для обогрева воздуха

Если дом , то часть тепла, вырабатываемого источником, должна расходоваться на нагрев воздуха, поступающего извне.

Для расчета используйте формулу:

Qc. = с * м * (тв — тн) где

  • c = 0,28 кг⁰С и обозначает теплоемкость воздушной массы;
  • м Символ указывает на массовый расход наружного воздуха в кг.

Последний параметр получается путем умножения общего объема воздуха, равного объему всех помещений, при условии, что воздух каждый час обновляется на плотность, изменяющуюся в зависимости от температуры.

На графике представлена ​​зависимость плотности воздуха от его температуры. Данные необходимы для расчета количества тепла, необходимого для обогрева воздушной массы, поступающей в дом в результате принудительной вентиляции (+)

Если в здание входит 400 м 3 /ч, то m = 400 * 1,422 = 568,8 кг/ч. Кк. = 0,28 * 568,8 * 45 = 7166,88 Вт.

В этом случае значительно возрастет необходимая тепловая мощность пола.

Расчет необходимого количества труб

Для устройства пола с водяным отоплением, различающихся по своей форме: змейка трех видов — собственно змейка, угловая, двойная и улитка. В одной смонтированной схеме можно найти комбинацию разных форм. Иногда для центральной зоны пола выбирают улитку, а для краев – один из видов змей.

«Улитка» — рациональный выбор для больших помещений простой геометрии. В помещениях сильно вытянутых или имеющих сложную форму лучше использовать «змейку» (+)

Расстояние между трубами называется ступенькой. При выборе этого параметра необходимо соблюсти два требования: ступня стопы не должна ощущать перепад температур в отдельных зонах пола, а трубы должны использоваться максимально эффективно.

Для граничных участков пола рекомендуется шаг 100 мм. В других областях можно сделать выбор шага в пределах от 150 до 300 мм.

Теплоизоляция пола очень важна. На первом этаже его толщина должна достигать не менее 100 мм. Для этого используется минеральная вата или экструдированный пенополистирол.

Для расчета длины трубы существует простая формула:

L = S/N * 1,1 где

  • S — площадь контура;
  • N — шаг укладки;
  • 1,1 — запас на изгиб 10%.

К итоговой величине добавить кусок трубы, проложенной от коллектора до разводки теплого контура как на обратке, так и на подаче.

Пример расчета.

Исходные значения:

  • площадь — 10 м²;
  • расстояние коллектора — 6 м;
  • шаг укладки — 0,15 м.

Решение задачи простое: 10/0,15*1,1+(6*2)=85,3 м.

При использовании металлопластиковых труб длиной до 100 м чаще всего выбирают диаметр 16 или 20 мм. При длине трубы 120-125 м ее сечение должно быть 20 мм².

Одноконтурная конструкция подходит только для помещений с небольшой площадью. Пол в больших помещениях делится на несколько контуров в соотношении 1:2 – длина конструкции должна превышать ширину в 2 раза.

Ранее рассчитанное значение является общей длиной. Однако для полноты картины нужно выделить длину отдельного контура.

На этот параметр влияет гидравлическое сопротивление контура, определяемое диаметром выбранных труб и объемом подаваемой воды в единицу времени. Если пренебречь этими факторами, потери давления будут настолько велики, что ни один насос не будет обеспечивать циркуляцию теплоносителя.

Определение расхода труб в зависимости от выбранного шага укладки

Контуры одинаковой длины — это идеальный случай, но редко встречающийся на практике, т.к. площадь помещений разного назначения сильно отличается и просто нецелесообразно приводить длину контуров к одному значению. Профессионалы допускают разницу в длине трубы от 30 до 40%.

Величина диаметра коллектора и пропускной способности узла смешения определяет допустимое количество подключаемых к нему петель. В паспорте на смесительный узел всегда можно найти значение тепловой нагрузки, на которую он рассчитан.

Предположим, что коэффициент пропускной способности ( Kvs ) равен 2,23 м 3 / ч С этим коэффициентом некоторые модели насосов могут выдерживать нагрузку от 10 до 15 Вт.

Для определения количества контуров необходимо рассчитать тепловую нагрузку каждого. Если площадь, занимаемая теплым полом, 10 м², а теплоотдача 1 м², то показатель Квс равен 80 Вт, тогда 10*80 = 800 Вт. Это значит, что смесительный узел сможет обеспечить 15 000/800 = 18,8 помещений или контуров площадью 10 м².

Эти показатели максимальные, и применять их можно только теоретически, а реально цифру нужно уменьшить хотя бы на 2, тогда 18 — 2 = 16 контуров.

Нужно для подбора посмотреть, много ли у него выводов.

Проверка правильности подбора диаметра труб

Для проверки правильности подбора сечения трубы можно воспользоваться формулой:

υ = 4 * Q * 10ᶾ / n * d²

Когда скорость соответствует найденному значению, сечение трубы выбрано правильно. Нормативные документы допускают максимальную скорость 3 м/с. диаметром до 0,25 м, но оптимальное значение 0,8 м/с., так как с увеличением его значения увеличивается шумовой эффект в трубопроводе.

Дополнительная информация по расчету труб теплого пола приведена в .

Рассчитываем циркуляционный насос

Чтобы система была экономичной, нужно обеспечить необходимое давление и оптимальный расход в контурах. В паспортах на насосы обычно указывают давление в контуре наибольшей длины и общий расход теплоносителя во всех контурах.

На давление влияют гидравлические потери:

∆ h = L * Q² / k1 где

  • L — длина контура;
  • Q — расход воды л/с;
  • к1 — коэффициент, характеризующий потери в системе, показатель можно взять из гидравлических справочников или из паспорта оборудования.

Зная давление, рассчитайте расход в системе:

Q = k * √H где

k Коэффициент расхода. Профессионалы принимают расход на каждые 10 м² дома в пределах 0,3-0,4 л/с.

Среди компонентов водяного теплого пола особая роль отводится циркуляционному насосу. Преодолеть сопротивление в трубах

может только агрегат, мощность которого на 20 % выше фактического расхода теплоносителя. на самом деле на них влияют длина и геометрия сети. Если давление слишком высокое, уменьшите длину контура или увеличьте диаметр труб.

Советы по выбору толщины стяжки

В справочниках можно найти информацию о том, что минимальная толщина стяжки 30 мм. Когда помещение достаточно высокое, под стяжку укладывают утеплитель, что повышает эффективность использования тепла, отдаваемого отопительным контуром.

Самый популярный материал подложки. Его сопротивление теплопередаче значительно ниже, чем у бетона.

При устройстве стяжек с целью выравнивания линейного расширения бетона периметр помещения оформляют демпферной лентой. Важно правильно подобрать его толщину. Специалисты советуют при площади помещения, не превышающей 100 м², устраивать компенсирующий слой толщиной 5 мм.

Если площадь больше за счет длины, превышающей 10 м, толщина рассчитывается по формуле:

b = 0,55*L где

L — это длина помещения в м.

Выводы и полезное видео по теме

О расчете и монтаже теплого гидравлического пола этот видеоматериал:

В видео даны практические рекомендации по укладке пола. Информация поможет избежать ошибок, которые обычно совершают влюбленные:

Расчет позволяет спроектировать систему «теплый пол» с оптимальными характеристиками. Отопление допустимо устанавливать, используя паспортные данные и рекомендации.

Подойдет, но профессионалы советуют все же потратить время на расчет, чтобы в итоге система потребляла меньше энергии.

У Вас есть опыт расчета теплого пола и составления проекта контура отопления? Или есть вопросы по теме? Делитесь своим мнением и оставляйте комментарии.

БЕСПЛАТНЫЙ Калькулятор тепловых потерь | h3x Engineering

h3x Tools

Используя Калькулятор тепловых потерь, рассчитайте тепловые потери здания по комнатам.

Получите точные результаты с помощью этого простого, но мощного инструмента.

Другие пользователи считают эти калькуляторы полезными

Калькулятор падения давления

Быстро и легко рассчитывайте потери на трение в трубе, избавляя от необходимости выполнять сложные математические расчеты вручную.

Калькулятор скорости в трубе

Быстро и легко вычисляйте скорость в трубе, избавляя от необходимости выполнять сложные математические расчеты вручную.

Калькулятор объема трубы

Узнайте, сколько воды находится в вашей трубе, просто введя диаметр и длину трубы.

Переменные калькулятора тепловых потерь:

Материалы, воздухообмен, площадь и температура

Материалы

Строительные материалы напрямую влияют на потери тепла. Материалы с хорошими изоляционными свойствами, такие как стекловолокно или минеральная вата, помогают поддерживать температуру в помещении, тогда как проводящие материалы, такие как металл и стекло, способствуют отводу тепла, увеличивая потери тепла.

Воздухообмен

Воздухообмен через вентиляцию или утечку может привести к значительным потерям тепла. Здания с хорошей герметизацией и регулируемой системой вентиляции, как правило, теряют меньше тепла по сравнению со зданиями с утечками воздуха.

Площадь

Площадь поверхности здания, подвергающаяся воздействию внешней среды, коррелирует с потерями тепла. Здания с большей площадью внешней поверхности, как правило, быстрее теряют тепло из-за увеличения возможностей теплопередачи.

Температура

Разница между внутренней и наружной температурой играет существенную роль в потерях тепла. Более высокие перепады температур заставляют тепло течь быстрее изнутри наружу, увеличивая потери тепла.

Формула тепловых потерь

Существует два расчета тепловых потерь, они должны рассчитываться отдельно и объединяться вместе:

Потери при передаче

Каждый компонент здания (стены, крыша, окна и т. д.) имеет свой U- значение, которое измеряет, сколько тепла оно пропускает, и должно рассчитываться отдельно.

Рассчитываются по формуле:

Тепловые потери = Площадь x Значение U x Разность температур

Компоненты уравнения
  • Площадь = м²
  • Значение U = Вт/м²K
  • Температура = °C
Вентиляционные потери

Возникают, когда теплый воздух внутри здания замещается более холодным наружным воздухом посредством вентиляции или инфильтрации.

Их можно рассчитать по формуле:

Тепловые потери = Объем x Коэффициент воздухообмена x Удельная теплоемкость x Разница температур

Компоненты уравнения
  • Объем = м³
  • Температура = °C
  • Удельная теплоемкость = ~0,33

Для чего используется расчет тепловых потерь и почему это важно?

Потери тепла относятся к количеству тепловой энергии, уходящей из здания или дома, обычно через двери, окна, полы, стены и крышу.

Чем ниже потери тепла, тем меньше энергии вам потребуется для обогрева дома, что сделает ваш дом более энергоэффективным и сократит ваши счета за отопление.

Существует несколько причин, по которым расчет теплопотерь является жизненно важным:

  • Помогает точно спроектировать и определить размеры систем отопления.
  • Позволяет более эффективно использовать энергию, снижая затраты и воздействие на окружающую среду.
  • Может помочь вам определить проблемные зоны в вашем доме, где вы могли бы улучшить теплопотери.

Чтобы узнать больше, посетите нашу страницу Расчет тепловых потерь.

Использовать h3x для расчета тепловых потерь

  • Расчет тепловых потерь через здание
  • Проектирование вашей системы отопления (сертифицировано CIBSE)
  • Автоматизирует все расчеты на основе вашего макета дизайна

h3x — это проверенное CIBSE программное обеспечение для проектирования, созданное для повышения эффективности и качества вашего процесса проектирования. Читать далее.

Зачем использовать калькулятор тепловых потерь?

Существует несколько преимуществ использования калькулятора тепловых потерь, в том числе:

Повышенная точность

Калькулятор тепловых потерь обеспечивает точные результаты, исключая возможность человеческой ошибки при расчете скорости жидкости вручную.

Экономия времени:

Калькулятор тепловых потерь экономит время, обеспечивая быстрые и простые расчеты, избавляя от необходимости выполнять сложные математические расчеты вручную.

Простота использования:

Калькулятор тепловых потерь удобен в использовании и не требует специальной подготовки или технических знаний. Просто введите данные и получите подробные результаты.

Экономичность:

Использование калькулятора тепловых потерь позволяет сэкономить деньги за счет сокращения времени, затрачиваемого на ручные расчеты, и предотвращения дорогостоящих ошибок.

Что такое значение U?
Expand

Значение U измеряет потери тепла в строительном элементе, таком как стена, пол или крыша.

Показывает, насколько хорошо части здания передают тепло.
Чем ниже значение U, тем лучше материал изолирует.

Как рассчитать коэффициент теплопередачи?
Expand

Коэффициент теплопередачи рассчитывается путем деления скорости теплопередачи на разницу температур внутри и снаружи здания и на площадь, через которую передается тепло.

Этот расчет часто требует специальных знаний об используемых материалах.

Какие факторы влияют на потери тепла в здании?
Expand

Многие факторы влияют на потери тепла, в том числе материалы, используемые в строительстве, форма и ориентация здания, уровень изоляции, количество окон и дверей, тепловые мосты и скорость вентиляции.

Что такое тепловой мост?
Expand

Тепловой мост возникает, когда часть ограждающей конструкции является более проводящей, чем окружающие материалы, что приводит к пути наименьшего сопротивления для передачи тепла.

Типичными местами тепловых мостов являются щели в изоляции, оконные и дверные проемы, а также места, где стены соприкасаются с крышей или полом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *