Что такое завоздушивание системы и как его устраняют?
Почему при пуске отопления батареи в квартире могут прогреваться неравномерно (в одной комнате горячая, в другой — холодная)?
Об этом жителям рассказывают Руководитель производственно-технического отдела АО «Жилкомплекс» — Александр Долотов и сантехник нашей УК с многолетним стажем — Александр Викторов. В ролике проводятся пуско-наладочные работы на многоквартирном доме ул. Пионерская 18/2.
Что такое «завоздушивание» системы отопления?
Одна из наиболее распространенных проблем водяных отопительных систем – образование воздушных пробок, то есть завоздушивание системы. Наличие воздушной пробки в определенной части отопительной системы препятствует циркуляции воды, не смотря на наличие горячей воды в системе, завоздушенная часть остается холодной.
Вопрос удаления воздушной пробки из системы отопления очень актуальный, так как практически каждый сталкивается с данной проблемой хотя бы раз в период отопительного сезона.
Каковы причины образования воздушных пробок в системе центрального отопления?
— разгерметизация системы отопления по причине проведения ремонтных работ, в том числе замены элементов на трубопроводах отопительной трассы;
-дренаж воды из отопительной системы;
-наличие утечек в системе отопления;
-ошибки в проектировании разводки трубопроводов и установки радиаторов системы отопления в квартирах.
Как решается данная проблема?
Подобная ситуация характерна для первоначального запуска отопительной системы в начале отопительного сезона, а также после очередного перезапуска, например, в случае временной остановки котельной. В таком случае решением проблемы является полный сброс воды с отопительной системы дома и повторный ее запуск с учетом особенностей того или иного типа разводки.
Запуск центральной отопительной системы жилого дома должен производиться специалистами в строгом соответствии с правилами и особенностями того или иного типа разводки.
На обслуживаемом фонде АО «Жилкомплекс» уже тепло в квартирах 234 многоквартирных домов, и еще в 274 проводятся пуско-наладочные работы. Наберитесь немного терпения, наши инженеры и сантехники работают сейчас на каждом доме. Тепло скоро появится в каждой квартире!
Просим Вас быть внимательными при пуске ресурса, в случае протечек или любых нестандартных ситуаций сообщайте в управляющую компанию по круглосуточным телефонам Единой диспетчерской службы 8 (499)929-99-99, 8(495)512-00-11, через мобильное приложение ЕДС или любым другим удобным способом!
Адрес:
Московская область, Королев, Октябрьская, 4
Часы работы:
Пн.-Пт.: с 9:00 до 18:00
Прием заявлений и корреспонденции:
Пн.-Пт.: с 9:00 до 18:00
Обед с 13:00 до 14:00
Единая диспетчерская служба (круглосуточно):
+7 (499) 929-99-99
+7 (495) 512-00-11
Калькулятор ЖКУ
как развоздушить, удалить воздух и воздущную пробку, спуск воздуха для развоздушивания на примерах фото и видео
Содержание:
1. Причины завоздушивания системы отопления
2. Как развоздушить систему отопления
3. Кран Маевского для избежания воздушных пробок
4. Устройство и назначение сепаратора воздуха — воздухозаборника
5. Принцип работы автоматического воздухозаборника
Для того чтобы система теплоснабжения функционировала без каких-либо проблем, очень важно, чтобы все ее структурные части работали стабильно и без перебоев. Однако одной из частых проблем, которой не получается избежать у многих хозяев, является завоздушивание системы отопления, что означает накопление избытка воздуха.
Подобный дефект может стать причиной возникновения следующих проблем:
- передача тепла значительно ухудшается из-за появления пустот в теплоносителе;
- циркуляция воды может полностью остановиться.
В том случае, если вовремя не выполнить сброс воздуха из системы отопления, может появиться необходимость ремонта, что порой бывает очень недешево. Поэтому далее речь пойдет о том, как развоздушить систему отопления и обеспечить ей нормальную работу.
Причины завоздушивания системы отопления
Наиболее частыми причинами накопления слишком большого объема воздушных масс в отопительной системе обычно выступают следующие:
- разгерметизация системы, наиболее часто совершаемая при выполнении любого рода ремонтных работ;
- полное откачивание воды из отопительной системы;
- повреждение внешнего корпуса частей системы;
- неправильная замена отопительного оборудования, в том числе и стояков.
Подобные действия могут привести к образованию внутри конструкции системы явления, которое именуется не иначе как воздушная пробка в системе отопления. Кроме всех вышеперечисленных проблем, к которым может привести избыток воздуха, стоит сказать и о вредном для металлических конструкций кислороде, находящемся в составе попадающего внутрь воздуха. Читайте также: «Почему возникает завоздушивание системы отопления – причины и варианты решения проблемы».
Этот элемент, как известно, является основной причиной окисления деталей и неизменно приводит к сокращению эксплуатационного срока отопительного оборудования.
Дренаж воды, то есть ее полное откачивание, может выполняться в следующих ситуациях:
- для ремонта системы;
- при промывке функциональных частей. Читайте также: «Как выполняется промывка системы отопления в многоквартирном доме – способы, правила»;
- во время выполнения опрессовки и т.д.
Если завоздушило систему отопления, то причиной этому также может стать нарушение конструктивной целостности приборов, то есть воздух попадает внутрь через поврежденную часть трубопровода.
Как развоздушить систему отопления
Особенно часто с вопросом касательно того, как выгнать воздух из системы отопления, сталкиваются не только хозяева частных построек, но и жильцы многоэтажных сооружений, живущие наверху. Связано это, в первую очередь, с малым весом воздуха по сравнению с водой, в результате чего его излишки гораздо чаще скапливаются на верхних этажах.
Для того чтобы каким-либо образом бороться с этой проблемой, специалистами был разработан специальный автоматический воздушный клапан для отопления, позволяющий удалять избыток воздуха без вреда для оборудования. Читайте также: «Правильное удаление воздуха из системы отопления – варианты, как удалить воздух».
Однако подобное приспособление стало популярным лишь недавно. Гораздо более традиционным механизмом, помогающим осуществить спуск воздуха из системы отопления, является особое устройство, известное в народе как кран Маевского, а для частных домов более характерно считалось применять воздушный сепаратор. Читайте также: «Как спустить воздух из батареи – возможные варианты».
Кран Маевского для избежания воздушных пробок
Подобный механизм очень часто можно встретить в домах многоквартирного типа, особенно это касается построек старого образца.
Принцип установки отопительной системы в таких сооружениях отличался устройством нижней разводки, подключение которой к теплоцентрали выполнялось посредством элеватора. Читайте также: «Зачем нужен воздушный клапан для отопления – принцип работы, когда необходим клапан сброса воздуха».
Однако в процессе обслуживания в такой системе выявился один большой минус – это накопление воздуха в системе на верхних этажах, что неизбежно приводило к появлению проблем с циркуляцией теплоносителя и негативно сказывалось на работе всей системы в целом.
С целью предотвращения данного недостатка конструкторами было разработано специальное устройство, помогающие выполнить развоздушивание системы отопления. Это устройство представляет собой кран, который получил свое название в честь разработавшего его специалиста.
Кран Маевского можно установить на любой отопительный прибор. На торцах радиатора концы коллекторов являются глухими, что достигается посредством применения футорок. Читайте также: «Какой клапан для спуска воздуха из системы отопления лучше выбрать – виды и особенности».
В результате вместо верхней футорки было решено монтировать именно этот прибор, что означало его установку на самом верхнем участке системы отопления.
Эксплуатация такого изделия приобрела широкое распространение среди потребителей, что можно было объяснить функциональностью и надежностью его работы. Применение такого крана позволяет жильцам самостоятельно удалять излишки воздуха, причем весь процесс не отличается какой бы то ни было сложностью.
Важно помнить, что перед тем, как удалить воздух из системы отопления с помощью крана Маевского, не стоит слишком сильно затягивать на нем резьбу, иначе есть вероятность ее повреждения.
Главное отрицательная сторона такого способа – необходимость постоянного контроля над появлением в системе воздуха. Чтобы каким-либо образом избежать постоянного присутствия человека, было принято решение разработать особые патрубки с арматурой запорного типа, монтируемые в самом верху системы теплоснабжения, то есть на верхних этажах.
Подобный способ дает возможность работникам коммунальных служб самостоятельно удалять воздух, не привлекая при этом самих жильцом.
Устройство и назначение сепаратора воздуха — воздухозаборника
Совет: Используйте наши строительные калькуляторы онлайн, и вы выполните расчеты строительных материалов или конструкций быстро и точно.
Еще один хороший воздухосборник для системы отопления – это так называемый сепаратор воздуха, основное отличие которого от крана Маевского заключается в том, что суть первого состоит в удалении накоплений с верхних участков, а второй выводит уже растворенный в воде воздух. Это значит, что с помощью сепаратора воздух отдирается, переходит в пузыри и удаляется.
Часто можно встретить такие устройства, где под одним корпусом скрывается не только воздушный сепаратор, но и сепаратор шлама, который призван определять находящиеся в составе теплоносителя вредные смеси наподобие ржавчины, песка и т.п.
Некоторые хозяева часто задают следующий вопрос: почему завоздушивается система отопления, если она оснащена сепаратором? Это может быть связано с самим размером отопительной системы, поскольку в небольших коммуникациях спуск воздуха часто можно выполнить собственноручно, в то время как в объемных системах теплоснабжения сделать это зачастую бывает весьма непросто. Читайте также: «Как спустить воздух в батареях системы отопления – проверенные способы».
Принцип работы автоматического воздухозаборника
Этот удобный и очень функциональный аппарат позволяет хозяевам забыть о необходимости самостоятельного удаления воздуха из системы.
Функционируют автоматические воздухосборники для систем отопления следующим образом:
- Вода попадает внутрь механизма с поплавком из пластмассы.
- Оборудованный флажком поплавок оказывает давление на подпружиненный шток.
- Воздух получает свободный выход наружу.
- Аппарат вновь заполняется водой и цикл повторяется.
Использование одного из вышеописанных устройств, фото которых всегда можно найти у специалистов по монтажу подобного оборудования, позволит забыть о такой проблеме, как завоздушивание системы и сохранит время и деньги жильцов.
О завоздушивании системы отопления на видео:
youtube.com/embed/vN0NJYtmgqU?feature=oembed» loading=»lazy» frameborder=»0″ allowfullscreen=»»>
Автономная система деаэрации воды | Controls Group
Автономная система деаэрации воды | Группа элементов управления
Главная >
Механика грунта >
Оборудование для трехосных испытаний >
Системы деаэрации >
Автономная система деаэрации воды
- Описаниеиконка стрелка вправо
- Продуктызначок стрелка вправо
- Технические характеристикизначок стрелка вправо
- Значок документа со стрелкой вправо
Технические характеристики
icon arrow-down
Описание
Система удаления воздуха из воды удаляет растворенный воздух из воды, чтобы использовать эту воду для механических испытаний почвы (например, трехосных и проницаемости). Устройство Wykeham Farrance «все в одном» быстро и эффективно удаляет воздух из воды до уровня растворенного воздуха, приемлемого для геотехнических методов испытаний.
Как это работает
- Просто поместите устройство для деаэрации воды на стол и заполните резервуар для деаэрации водой из впускного клапана.
- Запустить процедуру деаэрации. По мере того, как насос создаёт вакуум в деаэрационном баке, магнитная система начинает перемешивать воду на высоких скоростях (1000-2000 об/мин). Затем произойдет кавитация, позволяющая удалить воздух из воды намного быстрее, чем при использовании только вакуума.
- После завершения остановите цикл. Резервуар автоматически вернет давление воздуха в норму, поэтому он готов к перекачке для заполнения трехосной камеры, напорных систем и гидравлических контуров. Эта процедура не зависит от самотечной подачи.
Высокая производительность
Производство 20-литровой партии деаэрированной воды занимает 15 минут благодаря продуманному сочетанию вакуумной откачки и кавитации.
Небольшая площадь основания
Систему можно использовать на скамейке без необходимости установки на стене отдельного резервуара для воды для заполнения трехосной ячейки.
Продукция
Код
Описание
Кол-во
Технические характеристики
- Объем бака: 20 л
- Размер трубки: внутренний диаметр: 6 мм наружный диаметр: 8 мм
- В постоянного тока Мембранный вакуумный насос
- Вес: 23 кг
- Размеры (Ш x Г x В): 340 x 410 x 680 мм
- Напряжение: 220–110 В, 50–60 Гц, 1 фаза
Документы
- Техническое описание автономной системы деаэрации
en значок стрелка вниз
значок США со стрелкой вниз
Сопутствующие товары
инженеров Массачусетского технологического института разрабатывают новый способ удаления углекислого газа из воздуха | MIT News
Новый способ удаления углекислого газа из потока воздуха может стать важным инструментом в борьбе с изменением климата. Новая система может работать с газом практически при любом уровне концентрации, вплоть до примерно 400 частей на миллион, присутствующих в настоящее время в атмосфере.
Большинство методов удаления двуокиси углерода из потока газа требуют более высоких концентраций, таких как те, которые обнаруживаются в дымовых выбросах электростанций, работающих на ископаемом топливе. Исследователи говорят, что было разработано несколько вариантов, которые могут работать с низкими концентрациями в воздухе, но новый метод значительно менее энергоемкий и дорогой.
Техника, основанная на пропускании воздуха через стопку заряженных электрохимических пластин, описана в новой статье в журнале Energy and Environmental Science постдока Массачусетского технологического института Саага Воскяна, который разработал эту работу во время работы над докторской диссертацией, и Т. Алан Хаттон, профессор химического машиностроения имени Ральфа Ландау.
Устройство представляет собой большую специализированную батарею, которая поглощает углекислый газ из воздуха (или другого газового потока), проходящего через его электроды, при зарядке, а затем выпускает газ при разрядке. В процессе работы устройство будет просто чередовать зарядку и разрядку, при этом свежий воздух или подаваемый газ продувается через систему во время цикла зарядки, а затем чистый концентрированный углекислый газ выдувается во время разрядки.
По мере зарядки аккумулятора на поверхности каждого из электродов происходит электрохимическая реакция. Они покрыты соединением под названием полиантрахинон, состоящим из углеродных нанотрубок. Электроды имеют естественное сродство к углекислому газу и легко реагируют с его молекулами в воздушном потоке или сырьевом газе, даже если он присутствует в очень низких концентрациях. Обратная реакция происходит при разрядке батареи — во время которой устройство может обеспечить часть мощности, необходимой для всей системы, — и при этом выбрасывается поток чистого углекислого газа. Вся система работает при комнатной температуре и нормальном давлении воздуха.
«Самым большим преимуществом этой технологии по сравнению с большинством других технологий улавливания или поглощения углерода является бинарный характер сродства адсорбента к диоксиду углерода», — объясняет Воскиан. Другими словами, материал электрода по своей природе «имеет либо высокое сродство, либо вообще не имеет сродства», в зависимости от состояния зарядки или разрядки аккумулятора. Другие реакции, используемые для улавливания углерода, требуют промежуточных стадий химической обработки или ввода значительной энергии, такой как тепло или перепады давления.
«Это бинарное сродство позволяет улавливать углекислый газ любой концентрации, включая 400 частей на миллион, и позволяет высвобождать его в любой поток носителя, включая 100-процентный CO 2 », — говорит Воскиан. То есть, когда любой газ проходит через пакет этих плоских электрохимических ячеек, на этапе выпуска захваченный углекислый газ будет уноситься вместе с ним. Например, если желаемым конечным продуктом является чистый диоксид углерода для газирования напитков, то поток чистого газа можно продувать через пластины. Затем захваченный газ сбрасывается с пластин и поступает в поток.
На некоторых заводах по розливу безалкогольных напитков ископаемое топливо сжигается для получения углекислого газа, необходимого для шипения напитков. Точно так же некоторые фермеры сжигают природный газ для производства углекислого газа, которым питаются растения в теплицах. По словам Воскиана, новая система может устранить потребность в ископаемом топливе в этих приложениях и в процессе фактически убрать парниковые газы прямо из воздуха. В качестве альтернативы поток чистого диоксида углерода может быть сжат и введен под землю для долгосрочного захоронения или даже превращен в топливо с помощью ряда химических и электрохимических процессов.
Процесс, который эта система использует для улавливания и выделения углекислого газа, является «революционным», говорит он. «Все это происходит в условиях окружающей среды — нет необходимости в тепловом, атмосферном или химическом воздействии. Именно эти очень тонкие листы с обеими активными поверхностями можно сложить в коробку и подключить к источнику электричества».
«В моих лабораториях мы стремились разработать новые технологии для решения ряда экологических проблем, которые позволяют избежать необходимости в источниках тепловой энергии, изменениях давления в системе или добавлении химикатов для завершения циклов разделения и выпуска», Хаттон говорит. «Эта технология улавливания диоксида углерода является наглядной демонстрацией возможностей электрохимических подходов, которые требуют лишь небольших колебаний напряжения для разделения».
На действующей установке — например, на электростанции, где выхлопные газы производятся непрерывно — два набора таких блоков электрохимических элементов могут быть установлены рядом друг с другом для параллельной работы, при этом дымовые газы направляются сначала на один комплект для улавливания углерода, затем перенаправляется на второй комплект, в то время как первый комплект переходит в цикл сброса. Чередуя вперед и назад, система всегда могла одновременно улавливать и выпускать газ. В лаборатории команда доказала, что система может выдержать не менее 7000 циклов зарядки-разрядки с 30-процентной потерей эффективности за это время. По оценкам исследователей, они могут легко увеличить это число до 20 000–50 000 циклов.
Сами электроды могут быть изготовлены стандартными методами химической обработки.