Разное

Инверторный двигатель что это такое: Правда ли, что стиральные машины с инверторным мотором лучше? — Журнал Ситилинк

Содержание

что эты такое, как работает, как устроен

В последние годы появляется много новых технологий. Одно из последних веяний – инверторный двигатель, который стали ставить в крупной бытовой технике. Обещают при этом достаточно, но всё ли правда. 

Содержание статьи

  • 1 Что такое инверторный двигатель
  • 2 Основные моменты работы преобразователя
  • 3 Особенности применения
    • 3.1 В кондиционерах
    • 3.2 В стиральных машинах
    • 3.3 Холодильники и морозильные камеры с инверторными компрессорами
  • 4 Недостатки инверторных моторов

Что такое инверторный двигатель

Значительная часть техники имеет в своём составе электродвигатели и очень желательно чтобы двигатели имели разную скорость вращения. Этим они обеспечивают разные режимы работы и чем больше различных скоростей, тем лучше. Вообще, скорость двигателя изменять можно двумя способами – изменяя частоту или напряжение. Ранее, до появления инверторных двигателей, её меняли при помощи реостата, то есть изменяли напряжение. Пределы изменений были небольшие и плавной регулировки почти не получалось. Плавно регулировать скорость позволяли только коллекторные двигатели. Но они на больших оборотах имеют малый момент, что ограничивает их применение. К тому же имеют коллектор, так что не слишком долговечны и надёжны.

Основное отличие – возможность регулировать скорость в больших пределах

Пару десятилетий тому назад, с развитием полупроводниковых приборов, активно стали применять частотные преобразователи. Эти устройства позволяют изменять частоту и напряжение в широких пределах, это от 1 Гц до 500 Гц. То есть, инверторный двигатель получает питание не напрямую от сети, а со встроенного в него преобразователя. В зависимости от текущего режима работы он формирует напряжение требуемой частоты и/или уровня. То есть, инверторный двигатель — это, как минимум, два устройства в одном корпусе: частотный преобразователь и сам двигатель.

Инверторными могут быть два типа двигателей: асинхронные и коллекторные постоянного тока. Использование этой технологии позволяет получить широкий диапазон скоростей и возможность точного поддержания скорости. Также, инверторный блок может повышать/понижать напряжение, что позволяет получить требуемый крутящий момент. Всё это, безусловно, в определённых пределах, но общие характеристики инверторных электродвигателей становятся значительно лучше. Правда и цена на них тоже значительно выше, как и сложность управления.

Основные моменты работы преобразователя

Инверторный преобразователь меняет напряжение в несколько этапов:

  • Выпрямляет сетевое напряжение, получая постоянное (обычно стоит диодный полумост или мост).
  • Из постоянного напряжения формирует двухполюсные импульсы (положительные и отрицательные). Это блок называют инвертором, что и дало название самому принципу, блоку и мотору со встроенным преобразованием.

Вот на этом этапе и формируется требуемая частота и напряжение питания, которое затем и подаётся на двигатель. У некоторых инверторов есть ещё одна ступень преобразования, на которой ступенчатые импульсы превращаются в синусоиду. Так как форма напряжения на работу мотора влияния почти не оказывает, этот блок в инверторных двигателях отсутствует.

Блок схема частотного преобразователя и способ его подключения к двигателю

В «умной» технике, работой которой управляет микропроцессор, он задает параметры напряжения, регулируя скорость вращения в зависимости от программы или от состояния техники. Сам принцип работы двигателя от наличия инвертора не зависит, но этот дополнительный блок дает возможность управлять работой электромотора в широких пределах.

Особенности применения

Частотный преобразователь включают, в основном, с асинхронными двигателями. Они недороги, надёжны, экономичны. Модели с короткозамкнутым ротором бесколлекторные, что делает их ещё более привлекательными. Имеют асинхронные двигатели два недостатка, которые как раз, инвертором и устраняются. Первый существенный недостаток – высокий пусковой ток. Он может быть в 3-7 раз больше номинального. Кроме того, резкий старт с подачей питания 220/380 В ведёт к перегрузке, а значит и к быстрому износу мотора. Установив частотный преобразователь, при пуске переводим переключатель на минимум и постепенно доводим обороты до нужного значения. Пусковой ток при этом минимальный, а разгон плавный. Ни пусковые токи, ни перегрузки не страшны.

Платой за точное регулирование скорости является более сложное управление

Второй отрицательный момент – регулировать скорость вращения ротора в асинхронных двигателях получается слабо, но это без инвертора. Инверторный асинхронный двигатель позволяет изменять скорость от десятков оборотов в минуту, до тысяч. И всё это плавно, без перегрузок.

Но инверторный двигатель значительно дороже «обычного» с точно такими же характеристиками. Дело в дополнительном оборудовании, причём совсем недешёвом, но использование этой технологии имеет свои плюсы.

В кондиционерах

Как работает обычный кондиционер? Компрессор в нём то включается, то выключается. Температура стала на градус выше заданной, компрессор включился, работает пока она не станет на один градус ниже заданного предела. Включается снова, когда температура снова окажется ниже предела. И каждое включение/включение – это стартовый ток, перегрузки.

Как работает кондиционер с инверторным мотором и обычным

Если в кондиционере стоит инверторный преобразователь, он просто задаёт скорость работы компрессора так, чтобы температура сохранялась. Это снижает расход электричества (нет пусковых многократно возросших токов), оборудование работает в щадящем режиме без перегрузок, что продлевает срок эксплуатации.

В стиральных машинах

Используют инверторные моторы и в стиральных машинах. В стиральных машинах «обычного» класса ставят коллекторные электродвигатели. Они могут разгоняться до высоких скоростей (до 10000 об/ми), имеют хороший крутящий момент на больших скоростях. Их минус – повышенный уровень шумов, так как, кроме ремённой передачи шумят еще и сами щётки. Как их не притирай, коллекторный узел всё равно шумит. И чем больше скорость вращения, тем выше уровень шумов. И он имеет высокую тональность, так что с ним достаточно сложно мириться.

Инверторный двигатель имеет небольшой размер и солидную мощность, но так ли важно это в корпусной технике

Последние годы появились стиральные машины с очень низким уровнем шума. В них установлены асинхронные двигатели с инверторным блоком. Раньше асинхронники не использовались, так как максимально могут развивать скорость до 3000 оборотов, что для нормального отжима недостаточно. Этот недостаток удалось обойти используя инвертор на входе. Он позволяет увеличить скорость электродвигателя до солидных величин. В двигателях нового поколения используется особый ротор – цельнолитой, это позволило уменьшить размеры двигателя. А так как в этих моторах нет коллектора и щёток, то и шумят они при работе совсем незначительно. Частотная регуляция скорости вращения позволяет точно контролировать число оборотов.

Если вы готовы платить за тихую работу — пожалуйста

Холодильники и морозильные камеры с инверторными компрессорами

В холодильниках используется такой же способ поддержания температуры, как и в кондиционерах. В камере холодильника расположен термодатчик, который через контакты включает и выключает компрессор. Точность поддержания температуры зависит от типа термодатчика, но обычно составляет несколько градусов, от трех до пяти. При такой работе приличествуют все «прелести»: многократные пусковые токи при включении, скачки напряжения сети, спровоцированные включением/выключением компрессора, шум.

В холодильниках и морозилках применение инверторных двигателей оправдано

Холодильник с инверторным двигателем работает тише, так как нет резкого пуска. Компрессор начинает работать с малых оборотов и постепенно выходит на нормальную скорость. Частота его работы зависит от температуры в камерах, но двигатель останавливается очень редко. Он, то работает на минимальных оборотах и тогда его почти неслышно даже вблизи, то чуть добавляет скорости, и его можно услышать. Этот режим работы более благоприятен для двигателя, он работает без пусковых перегрузок. И как ни странно, потребляют такие моторы меньше электроэнергии, снова-таки за счёт отсутствия пусковых токов. Ведь «обычный» компрессор включается каждые пять-десять минут. Превышение нормативного расхода – 4-8 раз. Вот за счёт этого и достигается экономия. Так что инверторный электродвигатель в холодильнике тоже оправдан, ну и плюсом, идет более тихая работа.

Недостатки инверторных моторов

Основной недостаток инверторных двигателей – их цена. Да, но она оправдана, так как в движке имеются, по сути два устройства, частотный преобразователь (который сам стоит немало) и двигатель. Но технология эта несёт определенные выгоды: снижение расхода электроэнергии за счёт минимизации пусковых токов, более широкий диапазон регулировок скорости, увеличение срока эксплуатации (за счёт отсутствия пусковых перегрузок). Это всё понятно, но есть и минусы и ограничения, о которых не так часто говорят.

Инверторная технология хороша для стабилизации напряжения, попутно она ещё решает другие задачи

  • Не все моторы нормально реагируют на работу с низкими оборотами. Если такой режим будет длительным, лучше искать специальные модели под низкие обороты.
  • Каждый двигатель имеет максимальную скорость, которую лучше не превышать. Она указана на шильдике двигателя и выше скорость лучше не задавать.
  • На максимальных оборотах обычно падает крутящий момент. То есть, с повышением оборотов надо снижать нагрузку.
  • При выходе из строя инверторного двигателя ремонт обойдётся дороже, даже если «полетела» часть, с инвертором никак не связанная. Для определения неисправности необходим более квалифицированный специалист (должен же он решить, что инвертор в порядке), а стоимость услуг его выше.

Как видим, инверторный двигатель неидеальное решение, но довольно неплохое. Основной плюс – широкий диапазон регулирования скорости двигателя, точное поддержание этой скорости. Для асинхронных двигателей применение инверторной технологии означает ещё и минимизация пусковых токов и перегрузок. В общем, инверторный двигатель хорош там, где двигатели часто включаются/отключаются. Это холодильники, кондиционеры, станки, транспортёры и другое оборудование, которое ранее работало на асинхронных двигателях.

Не во всей технике установка инвертора необходима

Ещё инверторные двигатели (или частотные преобразователи к обычному двигателю) стоит применять там, где от производительности/скорости зависит эффективность работы. Например, подающие насосы, которые должны поддерживать определённое давление в сети и должны реагировать/плавно изменять скорость. Ещё инверторный двигатель может быть важен в подъёмной технике. Как пример, для откатных или подъёмных ворот. Возможность изменять скорость и развивать хорошее усилие на малых оборотах важно.

принцип действия, достоинства и недостатки электродвигателя

Главным образом инверторный мотор отличается от обычного электродвигателя тем, что не имеет щеток. Применяются агрегаты в холодильниках, автоматических стиральных машинах, кондиционерах. Преобразователь, выполняющий функцию источника питания мотора, переменное напряжение преобразует в постоянное. Полученный постоянный ток преобразуется в переменный ток заданной частоты

  • Устройство моторов инверторного типа
  • Плюсы и минусы устройства
  • Использование двигателя в стиральной машине

.

Устройство моторов инверторного типа

Основными частями являются непосредственно мотор и частотный преобразователь, что и обеспечивает принцип работы двигателя. Частотный преобразователь служит для регулирования скорости мотора за счет создания требуемой частоты напряжения на выходе преобразователя. Диапазон выходной частоты в преобразователях варьируется в широких пределах, а предельные ее значения могут в десятки раз превосходить частоту питающей сети.

В инверторном преобразователе происходит двойное преобразование напряжения. Синусоидальное напряжение на входе преобразователя сначала выпрямляется в блоке выпрямителя, фильтруется и сглаживается конденсаторами электрического фильтра. Далее из полученного постоянного напряжения с помощью схем управления и выходных электронных ключей задается последовательность управляемых импульсов нужно формы и частоты. С помощью импульсов создается переменное напряжение требуемой величины и частоты, формируемое на выходе преобразователя.

Синусоидальный переменный ток, вырабатываемый преобразователем, на обмотках электромотора формируется по типу частотно-импульсного или широтно-импульсного модулирования. Электронными ключами для преобразователей служат, к примеру, выключаемые тиристоры GTO, их модернизированные версии IGCT, SGCT, GCT и транзисторы IGBT.

Мотор состоит из статора с небольшими обмотками возбуждения, чье количество кратно трем. В статоре вращается ротор с постоянными магнитами, закрепленными на нем. Количество магнитов втрое меньше количества обмоток возбуждения. Коллекторно-щеточного узла в таком двигателе нет.

Все это и есть инверторный электродвигатель, принцип работы которого основывается на взаимодействии магнитных полей статора и ротора. Вращающееся электромагнитное поле статора, созданное преобразователем, заставляет вращаться частотный ротор с такой же частотой. Так, мотором управляет инверторный преобразователь

Плюсы и минусы устройства

Мотор инверторного типа отличается компактностью и высокой надёжностью. К другим его достоинствам можно отнести:

  • Отсутствие трущихся элементов.
  • Увеличение КПД и экономичности.
  • Низкий уровень шума.
  • Практически мгновенное достижение требуемой частоты вращения.
  • Возможность точного поддержания заданной частоты вращения.

Несмотря на массу достоинств, двигатель имеет недостатки. К наиболее существенным из них относятся:

  • Высокая цена преобразователя.
  • Необходимость дорогого ремонта в случае поломки.
  • Необходимость поддержания определенного уровня напряжения в сети.
  • Невозможность функционирования из-за изменения питающего напряжения сети.

Использование двигателя в стиральной машине

Инверторный двигатель, разработанный в 2005 г. инженерами корейского концерна LG, вывел на новый уровень производство стиральных машин. В сравнении с предшественниками новый мотор имеет лучшие технические характеристики, большую износоустойчивость, дольше служит. Поэтому инверторные двигатели завоевывают все большую популярность и производство их растет. Но все ли так радужно?

Достоинства и недостатки процесса стирки:

  1. Тишина. Техника с прямым приводом двигателя работает тише машин с инверторным мотором. Машина с «инвертором» издает звуки, напоминающие писк и завывание. Но главная причина этого — включенный насос и вращающийся в режиме отжима барабан.
  2. Экономия. Главным образом электричество потребляет не двигатель, а нагревательный элемент. Получается, что сэкономить можно, но всего 2−5% энергии.
  3. Долговечность. Этот показатель достигается за счет отсутствия щеток, так как подшипники есть и в оборудовании с инверторным двигателем. Однако служат подшипники порядка 10 лет, а заменить их стоит 2−3 у.е.
  4. Двигатель способен прослужить больше 15 лет.
  5. Интенсивный отжим. Отжим на высоких оборотах делает белье почти сухим, но ткань при этом повреждается и рвется быстрее.
  6. Точность оборотов. Главное — качество стирки, мало кому интересно, какие совершаются обороты.

Рекомендуется обращать внимание на функциональность оборудования. Сам по себе инверторный мотор не гарантирует безупречности стирки. Если собрались покупать стиральную машину с инверторным мотором, приобретайте технику исключительно в проверенных точках. Чаще всего дешевые модели — это банальная подделка, и вряд ли их характеристики будут соответствовать тем, которые заявлены производителем.

Что делает инвертор? | Колонка продуктов Fuji Electric

Приводы переменного тока (низкое напряжение)

Что делает инвертор?

В последнее время люди все чаще видят дома и в офисах инверторные кондиционеры и инверторные холодильники. Инверторная техника широко представлена ​​в торговых центрах и интернет-магазинах. Клиенты покупают их, потому что они известны своей энергоэффективностью. Но торговые представители и даже рекламщики не объясняют, как работает инвертор.

  • Что делает инвертор?
  • Технология преобразования энергии и управления двигателем
  • Преимущества
  • Низкое и среднее напряжение
  • Заключение

Что делает инвертор?

Инверторы

также называются приводами переменного тока или VFD (преобразователь частоты). Это электронные устройства, которые могут преобразовывать постоянный ток (постоянный ток) в переменный ток (переменный ток). Он также отвечает за контроль скорости и крутящего момента электродвигателей.

Электродвигатели используются в большинстве устройств, которые мы используем для работы, таких как мелкая электроника, транспорт и офисная техника. Этим двигателям для работы требуется электричество. Соответствие скорости двигателя требуемому процессу необходимо, чтобы избежать потерь энергии. На заводах бесполезная трата энергии и материалов может поставить под угрозу бизнес, поэтому инверторы используются для управления электродвигателями, повышая производительность и экономя энергию.

Технология преобразования энергии и управления двигателем

Привод переменного тока работает между источником питания и электродвигателем. Мощность поступает в привод переменного тока и регулирует его. Затем отрегулированная мощность передается на двигатель.

Привод переменного тока состоит из блока выпрямителя, промежуточной цепи постоянного тока и схемы обратного преобразования. Выпрямительный блок внутри привода переменного тока может быть однонаправленным или двунаправленным. Первый может разгонять и запускать двигатель, беря энергию из электрической сети. Двунаправленный выпрямитель может получать механическую энергию вращения от двигателя и возвращать ее в электрическую систему. Цепь постоянного тока будет хранить электроэнергию для использования блоком обратного преобразования.
Прежде чем регулируемая мощность будет получена двигателем, она проходит процесс внутри привода переменного тока. Входная мощность поступает в блок выпрямителя, и напряжение переменного тока преобразуется в напряжение постоянного тока. Промежуточная цепь постоянного тока сглаживает напряжение постоянного тока. Затем он проходит через схему обратного преобразования, чтобы преобразовать напряжение постоянного тока обратно в напряжение переменного тока.
Этот процесс позволяет приводу переменного тока регулировать частоту и напряжение, подаваемое на двигатель, в зависимости от требований процесса. Скорость двигателя увеличивается, когда выходное напряжение находится на более высокой частоте. Это означает, что скоростью двигателя можно управлять через интерфейс оператора.

Преимущества

1. Энергосберегающий

Вентиляторы и насосы значительно выигрывают от приводов переменного тока. Преимущество демпферов и средств управления включением/выключением, использование приводов переменного тока может снизить потребление энергии на 20-50 процентов за счет управления вращением двигателя. Это похоже на снижение скорости автомобиля. Вместо тормозов можно снизить скорость автомобиля, слегка нажав на педаль акселератора.

2. Устройства плавного пуска

Преобразователь частоты запускает двигатель, подавая мощность на низкой частоте. Он постепенно увеличивает частоту и скорость двигателя, пока не будет достигнута желаемая скорость. Операторы могут установить ускорение и замедление в любое время, что идеально подходит для эскалаторов и конвейерных лент, чтобы избежать падения груза.

3. Контролируемый пусковой ток

Для запуска двигателя требуется в семь-восемь раз больше тока полной нагрузки двигателя переменного тока. Привод переменного тока снижает пусковой ток, что приводит к меньшему количеству перемоток двигателя, что продлевает срок службы двигателя.

4. Уменьшение помех в линии электропередач

Запуск двигателя переменного тока через линию может привести к колоссальному потреблению энергии в системе распределения электроэнергии, что приведет к падению напряжения. Чувствительное оборудование, такое как компьютеры и датчики, срабатывает при запуске большого двигателя. Привод переменного тока устраняет это падение напряжения, отключая питание двигателя вместо отключения.

5. Легко меняет направление вращения

Преобразователи частоты

могут выполнять частые операции пуска и останова. Требуется только небольшой ток, чтобы изменить направление вращения после изменения команды вращения. Настольные миксеры могут выдавать правильную мощность в зависимости от направления вращения, а количество оборотов можно регулировать с помощью инверторного привода

.

6. Простая установка

Преобразователи частоты

предварительно запрограммированы. Питание управления вспомогательными устройствами, линиями связи и проводами двигателя уже подключено на заводе. Подрядчику необходимо только подключить линию к источнику питания, который будет питать привод переменного тока.

7. Регулируемый предел крутящего момента

Приводы переменного тока

могут защитить двигатели от повреждений, точно контролируя крутящий момент. Например, в машинном заторе двигатель будет продолжать вращаться до тех пор, пока не сработает перегрузочное устройство. Привод переменного тока можно настроить на ограничение величины крутящего момента, прикладываемого к двигателю, чтобы избежать превышения предела крутящего момента.

8. Исключение компонентов механического привода

Привод переменного тока может обеспечивать низкую или высокую скорость, требуемую нагрузкой, без повышающих или понижающих устройств и редукторов. Это экономит затраты на техническое обслуживание и требования к площади пола.

Низкое и среднее напряжение

Приводы переменного тока

классифицируются как низковольтные (LV) и средневольтные (MV). При приобретении приводов переменного тока необходимо учитывать несколько факторов.

Низковольтный привод имеет выходное напряжение от 240 до 600 вольт переменного тока (В переменного тока). Они обычно используются в конвейерных лентах, компрессорах и насосах. Поскольку низковольтные приводы вызывают меньшую нагрузку на двигатель, требуется минимальное техническое обслуживание. Он также потребляет меньше энергии. Привод низкого напряжения обеспечивает высокую частоту и лучшую производительность двигателя при низком напряжении, что снижает производственные затраты.

С другой стороны, низкое напряжение создает больший ток. Если приводы низкого напряжения используются с машинами высокой мощности (HP), они выделяют больше тепла и повышают температуру в помещении. Больше ток означает больше выделяемого тепла. Необходимо установить вентиляцию и дополнительное кондиционирование воздуха.

Огромные электродвигатели мощностью в несколько мегаватт на электростанциях и металлообрабатывающих заводах используют приводы среднего напряжения. Они имеют выходное напряжение 4160 В переменного тока, но могут достигать 69 000 В переменного тока. Им требуется высокое входное напряжение для достижения высокого выходного напряжения. С точки зрения затрат, для приводов среднего напряжения требуются более крупные и дорогие выключатели и трансформаторы. Они физически больше по сравнению с приводами LV. Приводы среднего напряжения также проходят регулярное техническое обслуживание под наблюдением инженера OEM, в отличие от приводов низкого напряжения, которые могут обслуживаться собственной командой по обслуживанию электрооборудования.

Заключение

Компании и обычные потребители стремятся экономить энергию. Это способствовало развитию инверторов в машинах и обычных бытовых приборах. Инверторы прячут и хранят в помещениях с достаточной вентиляцией. Тем не менее, они играют большую роль в энергосбережении. Возможность точного управления офисными устройствами в зависимости от спроса позволяет значительно снизить потребление энергии и производственные отходы.

Фейсбук
Твиттер

Сопутствующие товары

Связанный столбец

Как работает инверторный привод и регулирует скорость асинхронного двигателя переменного тока

Инверторный привод (VFD) работает, беря сеть переменного тока (однофазную или трехфазную) и сначала выпрямляя ее в постоянный ток, постоянный ток обычно сглаживается конденсаторами и часто дросселем постоянного тока, прежде чем он подключается к сети силовых транзисторов, чтобы превратить его в три фазы для двигателя.

Сеть силовых транзисторов небольшого инверторного привода фактически представляет собой один «интеллектуальный силовой модуль» (известный как IPM) и включает в себя собственную защиту и основные схемы управления. IPM преобразует постоянный ток в переменный, отсюда и термин «инвертор».

Метод управления известен как «ШИМ» для «широтно-импульсной модуляции». Это означает, что постоянный ток включается и выключается очень быстро (прерывается) транзисторными переключателями. Синусоидальная волна тока двигателя создается серией импульсов постоянного тока, где первый имеет очень короткий период включения, за которым следует более длительный период включения, затем более длинный, пока самый широкий импульс не появится в центре положительной синусоидальной волны, затем меньший, пока постоянный ток не инвертируется, и та же последовательность импульсов генерирует отрицательную часть синусоидальной волны.

Поскольку транзисторами можно управлять с любой временной базой, другие фазы контролируются большим количеством транзисторов, смещенных на время, необходимое для равномерного разнесения фаз на 120 градусов. Частота включения импульсов известна как «частота переключения».

Частота переключения обычно составляет от 3 кГц до 4 кГц, поэтому импульсы, которые он создает для 50 Гц, будут составлять 3000/50 или 60 импульсов на полную синусоиду или каждую фазу. Когда фиксированные импульсы напряжения подаются на индуктивность двигателя, результатом является управление как напряжением (по ширине фиксированных импульсов напряжения), так и частотой (путем распространения прогрессии и регрессии ширины импульса на большее количество базовых импульсов частоты переключения).

Из приведенного выше вы можете видеть, что IPM в приводе инвертора будет управлять напряжением и частотой практически в любом диапазоне, указанном в настройках параметров в VFD. Это означает, что при настройке инверторного привода мы можем выбрать запуск небольшого двигателя 230 В, соединенного по схеме «треугольник», от однофазного источника питания 230 В с базовой частотой, установленной на 50 Гц, небольшого двигателя 400 В, соединенного звездой, от трехфазного источника питания 400 В или любого другого сочетания напряжения и частоты, которое мы выберем, чтобы обеспечить правильное магнитное поле двигателя.

Двигатель будет правильно заряжен магнитным потоком, когда его кривая напряжения поднимется примерно от нуля x 0 Гц до базовой частоты x нормальное напряжение. Базовая частота и напряжение соответствуют указанным на паспортной табличке двигателя.

Это также означает, что мы можем правильно питать другие двигатели, такие как двигатель 400 В x 50 Гц, от источника питания 230 В при трехфазном напряжении 230 В, установив базовую частоту на 29 Гц (с пониженной скоростью), или запустить подключенный двигатель на 230 В от 400 В, установив базовую частоту на 87 Гц (с повышенной скоростью и мощностью).

Электрическое торможение применяется к валу двигателя через инверторный привод, если в установленном изделии предусмотрена такая возможность и присутствует тормозной резистор (DBR). Входной каскад инверторного привода представляет собой одностороннее силовое устройство, а выходной каскад пропускает энергию в обоих направлениях. Из этого следует, что инерция нагрузки вернет накопленную энергию инверторному приводу, когда будет предпринята попытка замедлить ее скорость с большей скоростью, чем это было бы достигнуто при естественном замедлении или движении по инерции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *