Блок питания своими руками.
Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное…
А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.
С чего же начать сборку блока питания?
Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания.
Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания.
Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.
Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт – повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.
Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.
Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.
Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.
Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).
Параметры блока питания:
Выходное напряжение (Uout) – от 3,3…9 В;
Максимальный ток нагрузки (Imax) – 0,5 A;
Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;
Защита от перегрузки по току;
Защита от появления на выходе повышенного напряжения;
Высокий КПД.
Возможна доработка блока питания с целью увеличения выходного напряжения.
Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.
Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.
Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.
Регулируемый импульсный стабилизатор.
Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.
Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.
Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.
Особенности импульсных стабилизаторов.
К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.
Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.
Думаю, теперь понятно, чем хорош импульсный стабилизатор.
Детали и электронные компоненты.
Теперь немного о деталях, которые потребуются для сборки блока питания.
Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.
Где найти такой трансформатор?
Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.
Силовые трансформаторы ТС-10-3М1 и ТП114-163М
Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.
Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.
Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.
Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.
Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.
Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность! Об этом читайте здесь.
Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.
Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.
Самовосстанавливающийся предохранитель FRX050-90F
Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.
Список деталей, которые потребуются для сборки блока питания.
Название | Обозначение | Номинал/Параметры | Марка или тип элемента |
Микросхема | DA1 | MC34063 | |
Диодный мост | VDS1 (VD1-VD4) | 1-2 ампер, 600 вольт | D3SBA10, RS207, DB107 и аналоги |
Электролитические конденсаторы | C8, C9, C12 | 330 мкФ * 16 вольт | К50-35 или аналоги |
C3 | 2200 мкФ * 35 вольт | ||
Конденсаторы | C1, C2, C4, C5, C10, C11, C13 | 0,22 мкФ | КМ-5, К10-17 и аналогичные |
C6 | 0,1 мкФ | ||
C7 | 470 пФ | ||
Резисторы | R1 | 0,2 Ом (1 Вт) | МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные |
R3 | 560 Ом (0,125 Вт) | ||
R4 | 3,6 кОм (0,125 Вт) | ||
R5 | 8,2 кОм (0,125 Вт) | ||
Резистор переменный | R2 | 1,5 кОм | СП3-9, СП4-1, ППБ-1А и аналогичные |
Диод Шоттки | VD2 | 1N5819 | |
Стабилитрон | VD3 | 11 вольт | 1N5348 |
Дроссель | L1, L2 | 300 мкГн | |
Дроссель | L3 | самодельный | |
Предохранитель плавкий | FU2 | 0,16 ампер | |
Самовосстанавливающийся предохранитель | FU1 | 0,5 ампер (на напряжение >30-40 вольт) | MF-R050; LP60-050; FRX050-60F; FRX050-90F |
Светодиод индикаторный | HL1 | любой 3 вольтовый |
Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. – внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.
Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD — дроссель).
SMD-дроссель
Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.
Дроссель с радиальными выводами
Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 — 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.
Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломить кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.
Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.
Дополнения.
В зависимости от нужд можно внести в конструкцию те или иные изменения.
Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.
Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.
В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.
В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.
О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.
Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.
Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:
Uвых = 1,25 * (1+R4/R3)
После преобразований получается формула, более удобная для расчётов:
R3 = (1,25 * R4)/(Uвых – 1,25)
Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.
Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.
При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.
Изготовление печатной платы.
Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.
Наиболее быстрый и комфортный способ – это изготовление печатной платы с помощью маркера для печатных плат. Применялся маркер Edding 792. Показал он себя с лучшей стороны. Кстати, печатка для данного блока питания сделана как раз этим маркером.
Второй метод подходит для тех, у кого в запасе есть много терпения и твёрдая рука. Это технология изготовления печатной платы корректирующим карандашом. Это, довольно простая и доступная технология пригодиться тем, кто не смог найти маркер для печатных плат, а делать платы ЛУТом не умеет или не имеет подходящего принтера.
Третий метод похож на второй, только в нём используется цапонлак – Как сделать печатную плату с помощью цапонлака?
В общем, выбрать есть из чего.
Налаживание и проверка блока питания.
Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» – взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.
Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!
P.S.
Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.
Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения . Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Блок питания для автомагнитолы из компьютерного БП.
Как обозначаются полевые транзисторы на схеме?
Как выбрать подходящий источник питания
Очень часто встречается распространенный вопрос, — какой блок выбрать для питания усилителя, светодиодной подсветки, регулируемого преобразователя и других, не менее полезных устройств. Выбор источника питания задача ответственная, потому давайте обсудим, чем они отличаются и как выбрать «тот единственный».
Время чтения: 17 минут |
Автор статьи — Андрей Кириченко |
Важное в статье:
- Отличие блоков питания
- Тип источника питания: импульсный или линейный
- Диапазон входного напряжения
- Выходное напряжение
- Мощность
- Количество каналов
- Конструкция
- Охлаждение
- Производитель
- Источники питания AC/DC в корпусе
- Маломощные блоки питания
- Ультратонкие блоки питания
- Источники питания средней мощности
- Мощные блоки питания
- Ультраплоские блоки питания
- Влагозащищенные блоки питания для светодиодов
- Сфера применения
- Источники питания AC/DC компании Hongwei
- Источники питания AC/DC компании Mean Well
- Топ лучших блоков питания AC/DC – основные характеристики
Отличие блоков питания
Начать стоит с пояснения, чем они вообще отличаются друг от друга, это позволит лучше определить требования к ним с учетом поставленной задачи.
Тип источника питания: импульсный или линейный
В последнее время «обычные» блоки отошли даже не на второй, а скорее на третий план, потому большой шанс, что проще купить импульсный БП, а точнее ИИП — импульсный источник питания. Это не значит, что трансформаторные БП не нужны, они применяются там, где необходим, например, пониженный уровень помех или повышенная электробезопасность.
Тип источника питания: импульсный или линейный
Диапазон входного напряжения
БП обычно имеют либо «широкий» диапазон 85 (100)-265 Вольт, либо «узкий» 198-265, при этом чаще в «широком» диапазоне работают маломощные БП, а у мощных ставят переключатель 115/230 Вольт.
Диапазон входного напряжения на примере маломощного и мощного БП
Выходное напряжение
Выходные напряжения у ИП обычно имеют значения: 3.3, 5, 9, 12, 15, 24, 36, 48, 60 Вольт — из этого ряда подбирают подходящий.
- 5В — адресные светодиодные ленты, USB устройства, светодиодные экраны;
- 12-24В — обычные светодиодные ленты, усилители, мониторы, радиостанции, 3D принтеры;
- 36В — хорошо подходят для питания различных преобразователей;
- 48В — PoE устройства, понижающие преобразователи.
В большинстве случаев допускается регулировка в небольших пределах, около +\-10%, максимально же можно регулировать до 15-20%, дальше могут начаться проблемы. Для регулировки используется подстроечный резистор.
Регулировка выходного напряжения при помощи подстроечного резистора
Мощность
С большим шансом вероятности вам понадобятся источники от 5-10 Ватт и до 500-600, но существуют гораздо более мощные модели. С напряжением, здесь также есть некое деление на группы — 10, 25, 35, 50 (60), 100, 150, 200, 240 Ватт.
Если ваша нагрузка имеет кратковременный характер, то мощность можно брать почти без запаса, но если речь о длительной работе, то лучше брать запас порядка 20-25% для недорогих, 10-15% для фирменных, это увеличит их ресурс.
Входное/выходное напряжение и мощность указывается на наклейке, которую вы можете найти на корпусе.
При этом часто мощность и выходное напряжение можно понять даже из названия модели, например, справа S-120-24, 120 это его мощность, а 24 это выходное напряжение.
Пример отображения мощности и выходного напряжения из названия модели на корпусе прибора
Количество каналов
Преобладают одноканальные БП, но есть варианты с несколькими напряжениями, например, 12 и 5 Вольт. Существуют блоки, совмещенные с функцией ИБП (источник бесперебойного питания).
Конструкция
Источники бывают в виде платы, в пластиковом корпусе, металлическом перфорированном, обычные и уменьшенной толщины (низкопрофильные), для монтажа на панель или DIN рейку, узкие для светодиодных светильников. В плане распространения популярности применяются — в алюминиевом корпусе с кожухом.
Конструктивное исполнение источников питания AC/DC
Охлаждение
Бывает пассивное и активное, при помощи вентилятора. По возможности лучше использовать с пассивным охлаждением, при этом его корпус работает как радиатор, а так как вентилятора нет, то нечему забиваться пылью. К сожалению, мощность БП с пассивным охлаждением часто ограничена на уровне 200-250 Ватт, блоки более 300-350 Ватт идут уже с вентилятором.
Блок питания AC/DC с активным охлаждением
Производитель
Конечно, лучше покупать что-то фирменное, например, известный многим Mean Well или Hongwei, но если задача не сильно критичная, то подойдет и что-то от менее известных производителей, цена там будет пониже.
Источники питания AC/DC в корпусе
Сегодня в статье будут описаны, наверное, одни из самых популярных блоков, особенно с среды радиолюбителей.
Речь пойдет о БП в кожухе. Они имеют хорошее соотношение мощность/цена, удобное подключение при помощи клемников, большой выбор моделей.
Маломощные блоки питания
Начнем с самых маломощных моделей, одна из них показана слева, имеет мощность 12 Ватт при выходном напряжении в 12 Вольт.
Но заметно более интересна целая линейка блоков 25-60 Ватт, так как выпускается она с разными выходными напряжениями, соответственно, токами. Внутри это часто неплохие ИП, работают в широком диапазоне напряжений, что хорошо при больших колебаниях напряжения в сети.
Как пример, модели:
- Блок питания, 12В, 2А, 25Вт
- Блок питания, 12В, 3А, 36Вт
- Импульсный блок питания, 12В, 5А, 60Вт
- Блок питания S-36-24
Внешне они почти не отличаются, разобраться можно по маркировке, где первое число — это мощность, а второе, выходное напряжение. Такие блоки удобны для питания различных зарядных устройств, камер видеонаблюдения, светодиодных лент, вентиляторов.
Пример маломощных блоков питания
Ультратонкие блоки питания
Отдельную группу занимают ультратонкие БП, хотя, наверное, корректнее их называть ультраузкими, так как они имеют малый размер в сечении, но большие в длину.
Такие блоки также имеют стандартное выходное напряжение в 12 или 24 Вольт, а мощность обычно порядка 12-48 Ватт, хотя существуют более мощные модели.
Сфера применения понятна уже из форм-фактора, светодиодное освещение, но конечно никто не мешает использовать их для других потребителей.
Источники питания AC/DC серии LF-CB
Маркировка здесь немного отличается, первое число также обозначает мощность, а вот второе это выходной ток, потому выходное напряжение можно узнать либо из полной маркировки, либо разделив первое число на второе.
Ниже пример маркировки на корпусе для LF-CB48-4А, который соответственно имеет на выходе 12 Вольт при токе до 4 Ампер. Данная серия блоков рассчитана на «узкий» диапазон входного напряжения, от 180 до 260 Вольт.
Пример маркировки на корпусе блока питания LF-CB48-4А
К той же серии относятся источники NeonPro производства Hyrite, а то, что они выпускаются только на напряжение 12 и 24 Вольт как раз говорит про преимущественное использование для питания светодиодных лент, которые также чаще делают на 12 и 24 Вольт. Они также имеют отличие в маркировке, первое число — это напряжение, а второе, мощность.
Естественно, как у предыдущих имеется полный комплекс защит, от перегрева, перегрузки, короткого замыкания.
Источники питания NeonPro производства Hyrite
Источники питания средней мощности
Не безынтересны БП, имеющие некий средний размер между совсем большими и показанными выше. Здесь также корпус является радиатором, есть варианты большей мощности, имеющие активное охлаждение. Применяют их там, где есть ограничение по ширине корпуса.
Как пример можно привести популярные модели S-75-24, S-120-12 имеющие мощность 75, 120 Ватт соответственно. Маркировка стандартная, первое число мощность в Ваттах, второе, выходное напряжение.
Мощные блоки питания
Отдельно стоит выделить ИП мощностью от 600 Ватт и выше. Например, блок питания напряжением 12 Вольт, номинальным током 50 Ампер. Такие блоки заметно крупнее, имеют внутри более мощный вентилятор, а то и два, отдельное питание ШИМ контроллера, радиаторы увеличенной площади.
Рассмотрим три ИИП мощностью 1,2 киловатт с разным напряжением:
|
|
|
|
|
|
Также стоит упомянуть про некоторые новинки БП от производителя Kejian.
Ниже сравним несколько преобразователей AC/DC.
Наименование модели |
S-600-24 |
S-600-36 |
S-800-36 |
S-800-48 |
Выходное напряжение |
24 В |
36 В |
36 В |
48 В |
Выходной ток |
25 А |
16 А |
22 А |
16,6 А |
Мощность |
600 Вт |
600 Вт |
800 Вт |
800 Вт |
Сравнительная таблица технических характеристик источников питания AC/DC
Ультраплоские блоки питания
Еще полезным классом являются ультраплоские блоки, которые используются для встраиваемых решений, мощность таких ИП обычно от 120 до 400 Ватт.
При этом большая часть моделей имеет пассивное охлаждение, хотя у моделей мощностью более 300 Ватт уже стоит вентилятор.
Например, Импульсный блок питания, 12В, 20А, 250Вт и Fengshuo 12V300W с пассивным охлаждением. А вот модель 12V300W имеет уже активное охлаждение, так как чем ниже выходное напряжение, тем ниже КПД блока питания.
Влагозащищенные блоки питания для светодиодов
Сейчас часто на блоках пишут — LED Power supply, соответственно покупатели интересуются, они предназначены только для светодиодного освещения? Конечно нет, такие и похожие источники питания абсолютно спокойной можно использовать для любых других нагрузок вплоть до аудио усилителей. Фактически это самые обычные БП, просто с дополнительной надписью.
А вот если нужен именно драйвер, при помощи которого питают мощные светодиодные матрицы, то следует искать надпись — LED driver, также обычно выходное напряжение у них указано в виде диапазона, например, 24-36, 30-49 Вольт, хотя бывают варианты с фиксированным напряжением.
Ключевое различие между блоком и драйвером в том, что для драйвера режим работы с непрерывным ограничением тока является штатным, а для БП, аварийным.
Примеры блоков LED Power supply и LED driver
Сфера применения
Помимо светодиодного освещения большую популярность набирают 3D принтеры, где большая мощность требуется для подогрева стола, напряжение при этом чаще 12 или 24 Вольт.
В таких случаях неплохим вариантом будет применение блоков в кожухе использующих пассивное охлаждение. Обусловлен такой выбор тем, что вентилятор — это лишний шум, а принтер работает по много часов, также вентилятор является потенциальным узлом отказа и если он остановится, то источник, скорее всего, выйдет из строя. Требуемая мощность при этом находится в диапазоне 150-200 Ватт, потому лучше использовать блоки мощностью 240 Ватт, например, Блок питания, 12В, 20А, 240Вт.
Блок питания мощностью 240 Ватт
Еще одна сфера применения, питание светодиодных экранов и адресных светодиодных лент. Особенность заключается в том, что им требуется напряжение 5 Вольт, большой ток, порядка 30-50 Ампер и более. В таких случаях требуются уже блоки питания с активным охлаждением, так как кроме большой мощности у них часто ниже КПД из-за небольшого напряжения.
Есть вариант обойти эту особенность путем разделения нагрузки на несколько групп, запитав их от менее мощных блоков, но стоимость такого решения выше.
Блок питания с активным охлаждением
Пример применения блока 5 Вольт в качестве источника для многоканальной зарядной станции или небольшой «майнинг фермы».
Источник питания AC/DC с напряжением 5 Вольт
Более мощные блоки применяются для питания станков с ЧПУ, а также регулируемых преобразователей напряжения. Здесь требуемое напряжение находится в диапазоне 48-60 Вольт, а мощность 800 Ватт и более.
Эти ИП заметно крупнее, имеют внутри более мощный вентилятор, а то и два, отдельное питание ШИМ контроллера, радиаторы увеличенной площади. Как пример, Kejian S-800-48, Kejian S-1200-48 с мощностью соответственно 800, 1200 Ватт, напряжением 48 Вольт, также есть модели на другое напряжение — Kejian S-1000-24 (1000 Ватт, 24 Вольт), Kejian S-1200-12 (1200 Ватт, 12 Вольт).
Источник питания AC/DC фирмы Kejian
В некоторых ситуациях приходится устанавливать блок на улице, часто в этом случае применяют блоки в герметичном корпусе. Если необходима большая мощность и активное охлаждение, то применяют решение с нижней установкой вентилятора. Подобные источники не являются герметичными, но корпус спроектирован так, что они нормально работают в уличных условиях, хотя для электробезопасности нужно все равно использовать корпус.
Хорошим примером является NeonPro RLDV-12E600C мощностью 600 Ватт, с напряжением 12 Вольт.
Источник питания NeonPro RLDV-12E600C мощностью 600 Ватт
Источники питания AC/DC компании Hongwei
|
|
Блок питания Hongwei HW-12V-500W
|
|
Блок питания Hongwei HW-48V-500W
Источники питания AC/DC компании Mean Well
Конечно, отдельно стоит сказать про одного из самых крупных производителей, фирму Mean Well. Она производит настолько большой ассортимент блоков, светодиодных драйверов и преобразователей, что они просто не влезут в формат обзорной статьи, потому придется кратко о ключевых моделях.
Очень долгое время популярной была модель серии NES, как пример NES-350-24, также часто использовали модели серии RS, отличающейся повышенной надежностью. Но фирма Mean Well выпустила серию LRS, которая при такой же ширине и длине как у NES имеет меньше высоту, потому считается низкопрофильной. Изменения коснулись и «начинки», которая стала более современной, потому получилось сделать их компактнее.
Модели серии LRS выпускаются как с пассивным охлаждением, например, LRS-100-12, LRS-150-12 мощностью 100, 150 Ватт, так и с активным у LRS-350-12. При этом первое число обозначает мощность, а второе, выходное напряжение.
Источники питания AC/DC LRS-100-12, LRS-150-12, LRS-350-12
В продаже есть большое количество очень похожих БП под другими названиями, но что примечательно, часто они настолько похожи снаружи и внутри, что можно их даже перепутать. По большому счету другие производители копируют фирму Mean Well, качество обычно при этом немного ниже, но стоят они дешевле.
Примеры аналогов блоков питания фирмы Mean Well
Топ лучших блоков питания AC/DC – основные характеристики
Чтобы выбрать оптимальный прибор для преобразования переменного тока (AC) в постоянный ток (DC), мы отобрали для вас лучшие источники питания 12, 24 и 48 Вольт:
Лучшие блоки питания AC/DC напряжением 12 Вольт |
Блок питания, 12В, 3А, 36Вт |
Основные характеристики: Выходное напряжение: 12 В Выходной ток: 3 А Мощность: 36 Вт Защита от: перегрузки по току |
Блок питания, 12В, 1А, 12Вт |
Основные характеристики: Выходное напряжение: 12 В Выходной ток: 1 А Мощность: 12 Вт Защита от: перегрузки по току | |
Блок питания Hongwei HW-12V-500W (12В, 40А, 500Вт) |
Основные характеристики: Выходное напряжение: 12 В Выходной ток: 41,7 А Мощность: 500 Вт Защита от: перегрузки по току, короткого замыкания | |
Блок питания, 12В, 30А, 360Вт |
Основные характеристики: Выходное напряжение: 12 В Выходной ток: 30 А Мощность: 360 Вт Защита от: перенапряжения, перегрузки по току, короткого замыкания | |
Блок питания, 12В, 15А, 180Вт |
Основные характеристики: Выходное напряжение: 12 В Выходной ток: 15 А Мощность: 180 Вт Защита от: перегрузки по току, перегрева | |
Лучшие блоки питания AC/DC напряжением 24 Вольт |
Блок питания, 24В, 10А, 240Вт |
Основные характеристики: Выходное напряжение: 24 В Выходной ток: 10 А Мощность: 240 Вт Защита от: перегрузки по току |
Блок питания, 24В, 20А, 500Вт |
Основные характеристики: Выходное напряжение: 24 В Выходной ток: 20 А Мощность: 180 Вт Защита от: перегрузки по току, короткого замыкания | |
Блок питания, 24В, 15А, 360Вт |
Основные характеристики: Выходное напряжение: 24 В Выходной ток: 15 А Мощность: 360 Вт Защита от: перенапряжения, перегрузки по току, короткого замыкания | |
Лучшие блоки питания AC/DC напряжением 48 Вольт |
Блок питания Hongwei HW-48V-500W (48В, 10А, 500Вт) |
Основные характеристики: Выходное напряжение: 48 В Выходной ток: 10,4 А Мощность: 500 Вт Защита от: перенапряжения, перегрузки по току, короткого замыкания |
Ну а под конец статьи стоит выделить основные моменты, которые надо учесть при выборе блока питания.
- Входное напряжение — для нормальных условий не имеет значения, для мест с нестабильной сетью лучше взять блок с широким диапазоном, но мощность их обычно ограничена на уровне 100-150 Ватт.
- Выходное напряжение — зависит от задачи, кроме того часто его можно немного подкорректировать.
- Выходной ток — не менее требуемого, можно больше, хуже нагрузке от этого не будет.
- Выходная мощность — лучше с запасом примерно на 20-30% в зависимости от производителя, особенно если предполагается длительная работа с полной нагрузкой.
- Охлаждение — предпочтительнее пассивное, но обычно мощность таких БП ограничена, кроме того они стоят больше. Из преимуществ, нет механических узлов, они гораздо меньше забиваются пылью.
- Производитель — Mean Well, Kejian, Sanpu, NeonPro, Fengshuo.
Относитесь к выбору блока питания ответственно, так как от этого зависит надежная, длительная работа ваших устройств.
Пошаговое руководство
Источник питания 12 В постоянного тока является одним из ведущих источников питания в современном технологическом мире. Главным образом из-за его доступности, надежности и простоты использования.
Вы хотите знать, что такое блок питания 12 В постоянного тока, как он работает, как его можно использовать и как его можно сделать дома?
В этой статье вы найдете ответы на все вышеперечисленные вопросы, и мы даже предлагаем вам различия между переменным и постоянным током.
Что такое блок питания 12 В постоянного тока?
Блок питания А
Источник питания 12 В постоянного тока — это устройство, которое подает электрическую энергию на нагрузку. Другими словами, основной целью источника питания является преобразование электрического тока от источника в необходимое напряжение, частоту и ток, которые питают нагрузку.
Блоки питания 12 В постоянного тока делятся на две категории, а именно:
- Регулируемые блоки питания 12 В
- Нерегулируемые источники питания 12 В
Кроме того, регулируемый блок питания 12В имеет три подгруппы:
- Переключающий регулятор переменного тока в постоянный
- Линейный регулятор переменного тока в постоянный
- Переключающий регулятор постоянного тока на постоянный
Давайте поближе познакомимся с каждым.
Переключение регулируемого переменного тока на постоянный
Импульсные регулируемые источники питания 12 В постоянного тока также известны как импульсные источники питания или источники питания SMPS.
Эти источники питания работают, регулируя выходное напряжение с помощью процесса высокочастотного переключения, использующего обратную связь с широтно-импульсной модуляцией.
Более того, в импульсных регулируемых источниках питания используется эффективная фильтрация электромагнитных помех для снижения нагрузки, а также обычных и дифференциальных помех в линии.
Регулируемый блок питания
Источник: Википедия
Для этого источника питания 12 В гальваническая развязка имеет решающее значение, поскольку она позволяет пользователям вводить вход в выход, а затем выводить на изоляцию заземления. Это обеспечивает хорошую универсальность.
Линейный регулятор переменного тока в постоянный
Блок питания 12 В постоянного тока с линейной стабилизацией функционирует путем регулирования выходного сигнала с помощью схемы модуляции рассеяния для эффективной работы.
В результате эти источники питания стабильны, имеют низкий уровень пульсаций и не переключают частоты для создания электромагнитных помех.
Аналогичным образом, регулируемое переключение переменного тока в постоянный также использует гальваническую развязку и доступно в выходах переменного тока в постоянный (широкий или одиночный).
Нерегулируемые источники питания 12 В постоянного тока
Это базовые блоки питания с нерегулируемым выходом 12 В постоянного тока и входом переменного тока.
Следовательно, выходное напряжение в нестабилизированном источнике питания изменяется в зависимости от нагрузки и входного напряжения. Самое главное, нерегулируемые блоки питания доступны по цене и отличаются высокой надежностью.
Как сделать источник питания постоянного тока 12 В?
Материалы, которые вам потребуются
- Плата Vero
- Регулятор LM7812
- Конденсатор 1 мкФ
- Радиатор
- Проволочные перемычки
- Конденсаторы 100 нФ (2)
- Конденсатор от 1000 мкФ до 4700 мкФ
- Диоды 1N4001 (4)
- Трансформатор 14–35 В
- Паяльник
- Инструмент для зачистки проводов
- Кусачки
Принципиальная схема
Некоторые моменты, на которые следует обратить внимание:
Во-первых, чтобы сделать блок питания на 5 вольт, вместо LM7812 можно использовать стабилизатор LM7805.
Во-вторых, вам понадобится радиатор, чтобы реализовать 1 ампер от этого блока питания.
Радиаторы
Источник: Википедия
Радиатор защищает устройство от высоких температур, которые могут привести к перегоранию.
Однако, если ваша цель меньше 500 мА, вы можете работать без радиатора.
Начать строительство
После того, как вы собрали все необходимые материалы, вы можете собрать блок питания 12 В постоянного тока.
При сборке не забудьте разместить электрические компоненты точно так, как показано на принципиальной схеме.
Прежде всего, делайте прочные паяные соединения без паяных перемычек, иначе блок питания выйдет из строя.
Тестирование
После изготовления блока питания наступает самая ответственная часть его тестирования. Проверив его с помощью мультиметра, вы увидите, нет ли перемычек припоя.
Мультиметр
Предполагая, что вы не обнаружите проблем, теперь вы можете использовать источник питания по своему усмотрению.
12 В переменного тока и 12 В постоянного тока: в чем разница между переменным и постоянным током?
Во-первых, давайте определим каждый тип валюты.
Переменный ток (AC)
Переменный ток, в основном известный в массах как AC, представляет собой тип тока или шкалы напряжения, которые через некоторое время меняют величину и направление.
Вот диаграмма формы сигнала переменного тока
Форма сигнала переменного/переменного тока
Постоянный ток (DC)
Постоянный ток, известный также как постоянный или постоянный ток, представляет собой ток, величина и направление которого остаются постоянными.
Некоторые источники постоянного тока включают сухие батареи или свинцово-кислотные батареи.
Форма сигнала постоянного/постоянного тока
Мы сравнили мощность 12 В переменного тока с мощностью 12 В постоянного тока с точки зрения безопасности, использования, измерений и потерь, чтобы найти разницу между переменным и постоянным током.
Потеря
Постоянный ток хорошо подходит для передачи на большие расстояния или передачи с большой пропускной способностью, и в результате популярность передачи HVDC возросла.
С другой стороны, переменный ток содержит параметры индуктивности, что приводит к значительным потерям при длительных передачах.
Применение
Постоянный ток стабилен и не сильно шумит; поэтому он может хорошо работать в электрических устройствах, таких как телевизоры и радиоприемники.
Переменный ток должен проходить через импульсный источник питания и переходить в постоянный ток для работы с электронными продуктами.
Безопасность
Как правило, 12 В постоянного тока более безопасны по сравнению с 12 В переменного тока. Например, человеческое тело имеет более низкое сопротивление при воздействии 12 В переменного тока, чем при 12 В постоянного тока.
Тем не менее степень поражения человека электрическим током во многом зависит от длительности нахождения под напряжением.
Пик
12 В переменного тока и 12 В постоянного тока имеют разные пиковые напряжения из-за соответствующих характеристик напряжения.
Могу ли я использовать 12 В переменного тока вместо 12 В постоянного тока?
Все адаптеры питания переменного или постоянного тока принимают определенный вход переменного тока от источника питания, преобразуя его в требуемый выход постоянного тока.
Выход постоянного тока в основном зависит от типа устройства, будь то динамик, зарядное устройство для телефона или зарядное устройство для ноутбука.
Зарядное устройство для телефона
Поэтому, если вы используете адаптер питания 12 В переменного тока, но устройству требуется адаптер питания 12 В постоянного тока, устройство может столкнуться с такими проблемами, как
- Неправильная полярность
- Низкое напряжение или высокое напряжение
Эксперты рекомендуют использовать только необходимые адаптеры питания с требуемым напряжением, чтобы избежать вышеуказанных проблем.
Адаптер питания для зарядного устройства для ноутбука
Типичные области применения источников питания 12 В постоянного тока
- Военные
- Медицинский
- Управление двигателем
- Сбор данных
- Аналоговая связь и передача данных
- Волоконно-оптические и телекоммуникационные сети
- Энергетика и коммунальное хозяйство
- Учебные заведения и университеты
- Компьютерная периферия
- Электроника и приборы
Сводка
Мы надеемся, что после прочтения этой статьи вы сможете дать определение переменного и постоянного тока и указать их различия.
Вы также должны быть в состоянии указать различные категории и подкатегории источника питания 12 В постоянного тока.
Самое главное, не забудьте точно следовать принципиальной схеме при изготовлении источника питания и принять необходимые меры предосторожности, чтобы избежать несчастных случаев.
Всякий раз, когда вы сталкиваетесь с какими-либо проблемами или вам нужна дополнительная информация по этому вопросу, не стесняйтесь обращаться к нам.
Недорогой лабораторный блок питания чрезвычайно высокой мощности 1-12 В – Matt’s Tech Pages агрегаты производства Power-One. Обычно они встречаются в IT. оборудования и обеспечивают единую выходную шину 12 В или 48 В с очень высоким номинальным током.
В случае модели на 12 В выходное напряжение может быть изменено программно с 1 В на 12 В (макс. 12,45 В). Модель на 48 В, к сожалению, не позволяет настраивать выходное напряжение.
Несмотря на то, что они очень гибкие и обеспечивают огромное количество тока, их не так просто подключить к другим вещам.
В этой серии есть 3 основные модели:
- FNP600 – Доступны версии 12 В (51 А) или 48 В (12,6 А)
- FNP850 – Доступны версии только 12 В (69,5 / 73 А)
- FNP1000 – Доступны модели только 48 В (21 А)
Некоторое время назад я построил указанную выше плату адаптера, на которой есть небольшой микроконтроллер PIC, позволяющий мне изменять напряжение, а также адаптировать этот непонятный разъем FCI PwrBlade к чему-то более легкому в обращении — в в этом случае Molex Minit-Fit Sr.
Недавно я рыскал по eBay в поисках модели FNP850 (которой у меня изначально не было) и обнаружил, что их продается куча, и очень дешево. Я купил пару FNP850 по 15 фунтов стерлингов каждый с бесплатной доставкой — неплохая сделка, когда они изначально продавались примерно в 30 раз дороже!
Самая распространенная модель — FNP850-S151G (12 В, 69,5 А), которая представляет собой модифицированную версию оригинальной модели FNP850-12RG (12 В, 73 А). Единственным отличием S151G от оригинальной модели 12RG является то, что S151G имеет несколько дополнительных контактов заземления, встроенных в корпус, он немного снижен и не имеет переменной скорости вращения вентилятора — он постоянно работает на 100% раздражающе .
Мое открытие, что эти вещи настолько дешевы и многочисленны, стало основой этого проекта — по сути, я подчистил свою первоначальную реализацию для микроконтроллера PIC, портировал ее на AVR — потому что никто не любит дорогие компиляторы, и выложил ее на Github . Я также разработал для него подходящую печатную плату.
Плата имеет сквозную конструкцию, такую же ширину, как блоки питания. Я добавил ЖК-дисплей 8×2, который показывает текущее либо сконфигурированное, либо измеренное выходное напряжение, а также выходной ток (сумма между всеми устройствами при подключении нескольких).
Плата может быть как ведущей, так и ведомой.
Выходной разъем на моих платах представляет собой 4-позиционный разъем Mini-Fit Sr, однако, если он не подходит, под этим разъемом также есть пара 5-миллиметровых отверстий, которые можно использовать для прикручивания кабелей непосредственно к печатной плате.
На основной плате установлено все – LCD, микроконтроллер, порт RS-232.
Нижняя сторона. Учитывая, что эта печатная плата рассчитана на 70 А, нам нужно немного усилить эти силовые дорожки. Тепловое изображение нижней стороны печатной платы при полной мощности. Усиление нижних дорожек должно быть значительным.
Ведомая плата имеет только разъем, который сопрягается с блоком питания, перемычки для установки адреса I2C, разъем дистанционного управления и разъем для подключения к ведущему устройству, имеющему все необходимые сигналы.
Подчиненная плата также может использоваться для «тупой» выходной платы или для подключения к другому микроконтроллеру.
Эти блоки питания имеют активный механизм распределения тока, который является одним из сигналов на разъеме между главной и подчиненной платами. Характеристики этого механизма, как правило, ограничивают количество источников питания, которые можно использовать параллельно.
Если вам нужно больше 70А — вы можете подключить их несколько параллельно. Я не знаю, каков точный предел, но Power-One производит шасси, которое может вместить до 5 из них, так что вы получите как минимум столько же.
С 5 параллельными соединениями у нас было бы 350 А (4,25 кВт) для игры — это не то, что вы собираетесь подключать к обычной розетке!
Программное обеспечение, которое я написал, автоматически обнаруживает и управляет несколькими устройствами. При условии, что все подключено правильно.
Для моего теста я буду включать два устройства параллельно, что дает нам около 140 А при 12 В. Потребление такого большого тока при таком низком напряжении на самом деле не так просто.
Моя тестовая нагрузка проста: несколько больших кабелей с большой нихромовой проволокой на конце.
Испытательная нагрузка измеряет около 0,082 Ом, что немного превышает полную нагрузку 140 А при 12 В. Я обрезал нихромовый провод, пока не получил это измерение.
Если мы также учтем, что это изменится под нагрузкой, и что у нас есть большее сопротивление на питающих кабелях, довольно сложно установить его точно во время сборки.
И, конечно же, этот нихромовый провод должен быть погружен в большое количество воды, иначе он мгновенно исчезнет, что может привести к травме.
В этом тесте я уделил время подключению сенсорных проводов, иначе мы не смогли бы получить полную мощность из-за потерь в кабеле. Я смог вскипятить этот таз с водой примерно за 10 минут.
Вот и все. Полная мощность – два источника параллельно! В конце концов мне пришлось настроить выходное напряжение, пока я не получил примерно 140 А на моей тестовой нагрузке.
Снимки с тепловизионной камеры испытательной установки на полной мощности показывают, что становится некомфортно жарко. Если вы собираетесь использовать эту установку на полную мощность в течение длительного времени, обратите особое внимание на тепловые характеристики. В моем случае я обнаружил, что мне пришлось удлинить кожух от блоков питания над этими печатными платами, чтобы использовать вентиляторы в блоке питания, чтобы избежать расплавления.
Порт RS-232 предоставляет интерфейс командной строки на скорости 9600 бод, который можно использовать в любое время во время работы.
Вот вывод команды справки:
команда>? Команды: мера|ctrl+e Показать измеренные значения выходного напряжения/тока выходное напряжение|o [от 1,00 до 12,45] Устанавливает выходное напряжение подключенных источников питания на|Включить основную мощность выкл| Отключить основную мощность режим запуска [0 или 1] Установите на «1», если выходная мощность должна быть включена после включения питания переменного тока. ожидаемыйpsus [от 0 до 8] Не включайте питание, пока не будет обнаружено N блоков питания. Установите 0, чтобы отключить эту проверку измеренное напряжение [0 или 1] Установите на «1», чтобы отображать измеренное напряжение на ЖК-дисплее вместо сконфигурированное напряжение показывать Показать сохраненную конфигурацию по умолчанию Загрузить конфигурацию по умолчанию перезагрузить Сбросить эту доску команда>
Конечно, у этой установки есть несколько ограничений, которые вы должны учитывать, прежде чем пытаться ее построить!
- Выходное напряжение , а не с плавной регулировкой. Выход должен быть отключен и снова включен, чтобы новое сконфигурированное напряжение вступило в силу. Программное обеспечение, которое я написал, делает это автоматически — это означает, что вы получите период «отключения» 500 мс при каждом изменении напряжения.
- Вы не можете подключать источники последовательно. Основное выходное напряжение относится к шасси/земле.