Своими руками

Дармовая электроэнергия своими руками: Как взять электричество из земли

Содержание

Вакуумная электронная лампа как источник дармовой электроэнергии

Экология познания. Наука и техника: Разгадка бестопливного источника электроэнергии заключается в получении электроэнергии непосредственно из обычного лампового триода-пентода в необычных режимах их работы

Валерий Дудышев разгадал тайну Николы Тесла про его источник электроэнергии на его электромобиле.

Зреет энергетическая революция в сфере альтернативной энергетики

Никола Тесла реально демонстрировал в работе бестопливный электромобиль еще в 1931 г. в Буфалло (США). Электроэнергия в электродвигатель на авто поступала от таинственной коробки с радиолампами. Но до сих пор эта тайна источника электроэнергии для электромобиля оставалась неразгаданной.

Разгадка заключается в получении электроэнергии непосредственно из обычного лампового триода-пентода в необычных режимах их работы. Необходимо лишь обеспечить взрывную электронную эмиссию с его катода. В итоге из лампового триода можно получить в электрическую нагрузку, присоединенную к нему параллельно — столько электроэнергии — сколько мы захотим (ну конечно в рамках разумного: скажем с выходной мощностью источника 5-10 квт). Взрывная электронная эмиссия – использованное в этом изобретении открытие академика Г. Месяца. — достигается в триоде подачей на управляющую сетку триода серии коротких по длительности но высоковольтных импульсов высокого напряжения.

Взрывная электронная эмиссия с поверхности катода  приводит к образованию лавины электронов, ускоряемых управляющей сеткой и попадающих на анод триода

В итоге эта лавина электронов с анода поступает в электрическую нагрузку и через нее снова на анод триода . Вот так и возникает и поддерживается дармовой электрический ток в цепи «триод — нагрузка«. Иначе говоря в таком режиме обычный ламповый триод при сильном эл. поле на управляющей сетке становится дармовой источником электроэнергии.

Расчеты показывают, что обычный ламповый вакуумированный триод в таком режиме работы, позволяет получить мощную электронную эмиссию в ламповом триоде и после некоторой доработки триода-получить из обычного лампового триода бесплатную электроэнергию, причем при охлаждении катода и анода — с одной радиолампы до 10 квт — вот такие чудеса!

Весьма рициональным техническим решением является сочетание резонансного трансформатора Тесла с вакуумной лампой. В этом случае взрывная электронная эмессия с катода вакуумерй лампы обеспечивается самим трансформатором Тесла.

Мощная автоэлектронная эмиссия с выходной обмотки трансформатора Тесла

Вариант устройства с использованием трансформатора Тесла


Рис.1 Блок- схема конструкции источника дармовой электрической энергии. Данное устройство выполнено на основе совмещения трансформатора Тесла и сферической вакуумной лампы с игольчатым катодом.

Краткое описание конструкции источника дармовой электроэнергии

Вакуумная электронная лампа оригинальной конструкции (обведена пунктиром)содержит сферический анод 1 в виде наружной металлической полой вакуумированной сферы, внутри которой размещен сферический катод 2 с наружными иголками. Наружная сфера анод 1 помещена в центре кубического корпуса 3 с внутренней электроизоляцией.4 К аноду и катоду жестко присоединен металлические стержни 5 которые через отверстия 6 выходят наружу корпуса 3 и электрически соединены через ключи К2,3,4 соответственно с выходом трансформатора Тесла 7 и электрической нагрузкой 8, присоединенной к заземлителю 9. Трансформатор Тесла 7 присоединен по входу ключом К1 к первичному маломощному источнику электроэнергии 11 ( например, батарейка «Крона»). Параллельно выходного электрической нагрузке 8 через ключом К4 присоединен преобразователь напряжения 10. служащий дл преобразования выходного высоковольтного напряжения с анода 1 в стандартные параметры электроэнергии 220 вольт 50 гц)

Устройство работает следующим образом: Вначале ключом К1 (12) присоединяют первичный источник электроэнергии 11 к трансформатору Тесла 7. Выходное высоковольтное напряжение с его выхода подают через ключ К2 на сферический игольчатый электрод – катод 2, которое образует с его игл мощную электронную эмиссию. Поток вырванных электронов с игл катода 2 достигает анода 1 и оседает на его внутренней поверхности.

В результате наружная поверхность сферического полого анода 1 приобретает избыточный электрический заряд, т.е. электрически заряжается до высоких напряжений. Затем после зарядки сферическорго анода 1. его присоединяют электрически через выходной стержневой электрод 5 ключом К3 к электрической нагрузке 8 и электрический заряд с анода 1начинает стекать черехз нагрузку 8 в заземлитель 9 и через него в Землю, т. е. в электрической нагрузке 8 возникает полезный электрический ток и вырабатывается полезная электроэнергия. При необходимости получения в иных полезных нагрузках электроэнергии стандартных параметров предусмотрен преобразователь напряжения включают ключ К4.

Избыточная электроэнергия в нагрузке 8 по сравнению с затратами электроэнергии от первичного источника 12 на работу трансформатора Тесла 7 обусловлена лавинной мощной автоэлектронной эмиссией электронов под воздействием огромных электрических сил электрического поля, создаваемого вторичной обмоткой трансформатора Тесла на иглах сферического катода 2

рансформатор Тесла — источник мощной электронной эмиссии. Посредством обычной вакуумной электронной лампы (лампового диода) этот поток электронов может быть превращен в полезную электроэнергию. Более подробно в статье ТРАНСФОРМАТОР ТЕСЛА В КАЧЕСТВЕ ИСТОЧНИКА ДАРМОВОЙ ЭЛЕКТРОЭНЕРГИИ.

Вывод

Идея бесплатного электричества из триода состоит в том что вполне можно использовать обычный ламповый триод, как источник электроэнергии, при условии получения значительной электронной эмиссии с катода!

Для получения электричества в обычном ламповом триоде — надо просто подать высокое напряжение между катодом и ускоряющей сеткой причем с + на сетке, и тогда, с возникновением потока электронной эмиссии, с катода и его ускорении + на сетке триода — на анод триода — с катода хлынет поток электронов — электроток, который и замкнем через нагрузку на катод.

Чем больше по величине ускоряющее электрическое поле между катодом и сеткой — тем больше электронная эмиссия с катода (вплоть до взрывной эл. эмиссии), значит, и больше полезный электрический ток с анода — эл. ток в нагрузке.

Так, если создать элементарные нормальные условия работе лампового триода в таком свободном режиме (ведь электронов в материале катода огромное количество и хватит на много лет работы ) – то вполне получаем дармовую  электроэнергию в эл. нагрузке на концах триода — параллельно ему. Эффект получить наиболее просто именно на ламповом триоде, потому что в нем вакуум. Следовательно, электронная эмиссия и тем более взрывная эл. эмиссия в нем возникнет наиболее просто и особо эффективно, при наличии большого электрического потенциала на сетке обычного триода с вакуумом внутри его стеклянной колбы. опубликовано econet.ru

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках

Автономное и резервное электроснабжение дома

Если в местности, где расположен ваш дом или дачный участок с домом, часты внезапные отключения электроэнергии продолжительностью несколько часов, то для полноценного проживания (нормальной работы системы освещения, сигнализации, отопления и бытовой техники) вам необходимо установить систему резервного электроснабжения.

Если же в местности, где находится ваше жильё или дача вообще нет стационарного электроснабжения, вам придётся задуматься об установке системы автономного (независимого) электроснабжения. Разница между ними только в продолжительности работы, резервная система рассчитывается на некоторое конечное время работы (обычно на максимальное время отключения сети электроснабжения). Автономная же система предназначена для постоянной работы.

Необходимо отметить, что поскольку в природе действует закон сохранения энергии, то мы не сможем потратить энергии больше, чем произвели и накопили. В этом плане можно привести аналогию с деньгами как средством учёта труда. Мы не сможем потратить больше денег, чем их имеется в нашем распоряжении. Интересно заметить, что автономной системе энергоснабжения соответствует (по аналогии с деньгами) наша заработная плата, резервной системе – кредиты и займы (на какое-то время).

Отсюда следует важный вывод, что без расчётов, без проекта, хотя бы приблизительного, прикидочного, создать работоспособную систему резервного и автономного электроснабжения нельзя!

Что же нам понадобится для создания системы автономного или резервного электроснабжения?

Во-первых, генераторы электроэнергии – устройства, преобразующие в электрическую энергию другие виды энергии. На сегодня промышленно выпускаются блоки из двигателя внутреннего сгорания (ДВС) и генератора, который преобразует сначала с помощью ДВС энергию топлива в механическую энергию, а затем механическую энергию двигателя с помощью электрогенератора – в электрическую. Для получения механической энергии, преобразуемой генератором, могут использоваться ветряные двигатели (ветряки) или гидротурбины. Могут быть использованы и относительно новые источники электроэнергии – солнечные батареи, в которых энергия солнечного света непосредственно преобразуется в электрическую энергию.

Все эти устройства имеют свои преимущества (у генераторов с приводом от ДВС – стабильная непрерывная работа; у ветровых, гидростанций и солнечных батарей – практически дармовая энергия) и недостатки (у генераторов с приводом от ДВС – высокая стоимость топлива и ограниченный моторесурс, у ветровых и солнечных батарей – зависимость от наличия ветра и солнечного света). Для установки минигидроэлектростанции необходимо наличие рядом с домом водного потока. Опять-таки при выборе генерирующего устройства необходимо обращение к специалистам и поиск с их помощью наиболее экономически выгодного варианта производства электроэнергии.

Во-вторых, устройства накопления и сохранения электроэнергии. Это, как правило, аккумуляторные батареи. Они позволяют превратить неравномерное и нестабильное поступление электроэнергии от генерирующих устройств в постоянное и стабильное. По аналогии можно рассмотреть систему пневмоснабжения промышленных предприятий – использование энергии сжатого воздуха для работы оборудования. Сжимающий воздух компрессор выдаёт на выходе пульсирующий поток сжатого воздуха, а для работы оборудования требуется стабильный и постоянный поток с давлением 6 атмосфер. Чтобы его получить, после компрессора ставится ресивер – ёмкость для накопления и хранения сжатого воздуха с клапаном регулирования давления. В результате на выходе ресивера мы имеем постоянный поток воздуха под давлением 6 атмосфер, причём давление сохраняется, даже если компрессор на время прекращает работу.

Вот таким «ресивером» в нашем случае и являются аккумуляторы. Основной показатель аккумуляторной батареи – это электрическая ёмкость, измеряемая в ампер-часах (А-ч). Что она означает? К примеру, батарея ёмкостью 200 А-ч теоретически способна выдавать ток в 200А в течение часа, или ток 20А в течение 10 часов. Практическая же отдача у батарей всегда меньше теоретической и зависит от многих факторов, например температуры.

Нетрудно подсчитать, что аккумуляторная батарея с рабочим напряжением 12 вольт и ёмкостью 200 А-ч накапливает теоретически 12х200= 2400 ватт-часов или 2,4 кВт-часов электроэнергии. Практически – около 2 кВт-ч, что может обеспечить, к примеру, освещение дома мощностью 500 ватт в течение 4 часов или приготовление обеда на электроплите (2кВт) в течение часа.

Обычно используется некоторое количество батарей, определяемое расчётом – проектом автономного или резервного электроснабжения дома. Батареи могут соединяться последовательно, повышая выходное напряжение, или параллельно, обеспечивая работу при том же напряжении, но с повышением токоотдачи.

В-третьих, преобразователи тока, так называемые инверторы.

Дело в том, что аккумуляторные батареи аккумулируют и выдают электроэнергию в виде постоянного тока напряжением 6, 12, 24 и т.д. вольт. Солнечные батареи – постоянный ток напряжением 24 вольта. Для зарядки аккумуляторов требуется напряжение выше рабочего и автоматически регулируемый ток зарядки. А для работы домашних электроприборов и бытовой техники требуется переменный ток под напряжением 220 вольт и с частотой 50 герц.

Для преобразования постоянного тока под низким напряжением 12 – 24 вольта в переменный ток под напряжением 220 вольт и служат инверторы. Инвертор – электронный прибор (без движущихся частей) как раз и делает такое преобразование. Стоит сказать несколько слов о форме преобразованного инвертором тока. Дело в том, что у переменного тока, получаемого из стационарных сетей электропитания, изменение напряжения во времени происходит по синусоиде (геометрической кривой) с частотой 50 циклов в секунду. Это обусловлено конструкцией промышленных генераторов – вращением ротора. В преобразователе способ получения синусоиды другой – искусственный. Поэтому выдаваемый преобразователем ток по форме лишь приближается к синусоиде (его форма – так называемая «квазисинусоида»). Это может влиять на работу некоторых электронных приборов – телевизоров, мониторов и т.д. и вызывать у звуковой аппаратуры так называемый «фон» — неприятный призвук.

Более дорогие инверторы рекламируются как выдающие «чистую синусоиду». При выборе инвертора это необходимо учитывать и при необходимости использовать инверторы с «чистой синусоидой».

И ещё, электродвигатели в момент пуска (когда ротор ещё неподвижен) работают как бы в режиме короткого замыкания, пусковой ток ограничивается только сопротивлением обмоток, которое невелико. Поэтому пусковые токи таких устройств, как электронасосы, пылесосы и т.д. могут в 4-5 раз превышать номинальные. А инверторы допускают превышение тока в 1,5 раза. Нужно иметь это в виду и для решения проблемы обращаться к специалистам.

В-четвёртых, электронные устройства автоматического управления, регулирования и защиты.

Как правило, ими оснащаются современные инверторы. Это могут быть релейные устройства, автоматически запускающие генератор с двигателем внутреннего сгорания для зарядки аккумуляторов при их разряде. Это устройства, которые быстро и незаметно для потребителей электроэнергии переводят домовую электросеть в режим резервного питания при внезапном отключении сети.

Более подробно с устройствами инверторов можно ознакомиться по их описанию и проконсультировавшись со специалистами.

Так же устройствами управления, регулирования и защиты оснащаются генераторы с приводом от ДВС.

В заключение приведем несколько примеров типовых схем резервного и автономного электроснабжения:

1. Простейшая система резервного электропитания = инвертор + аккумулятор

Дополнение к электросети при частых отключениях. Пока в электросети есть напряжение– инвертор включает зарядку аккумулятора и регулирует её, при внезапном отключении– инвертор моментально (незаметно для подключённых приборов) подключает к домовой сети питание от аккумулятора. Применяется при непродолжительных отключениях и при небольшом ограниченном энергопотреблении (как правило, некоторой группой особо важных потребителей (сигнализация, холодильник и т.д.))

2. Автономное и резервное электропитание = генератор с приводом от ДВС + аккумуляторы + инвертор

При разрядке аккумуляторов инвертор через реле автоматически запускает двигатель генерирующей установки и заряжает аккумуляторы. Двигатель внутреннего сгорания работает циклами, что увеличивает его моторесурс и уменьшает расход топлива. В случае использования установки в качестве резервного электроснабжения, инвертор при отключении основной сети автоматически переключает питание на резервное от аккумуляторов.

3. Автономное электроснабжение от генератора с приводом от ДВС

Вполне приемлемый вариант – выпускаемые двигатели-генераторы рассчитаны на такую работу. Однако необходимо учесть, что двигатели имеют ограниченный моторесурс, к примеру, дешёвые двухтактные двигатели имеют ресурс всего 500 – 1000 часов. К тому же электроэнергия, вырабатываемая таким образом, имеет высокую себестоимость. Другими словами, такой вариант подходит при временном (сезонном) проживании, к примеру, для дач. А для автономного электроснабжения при условии постоянного проживания лучше всего применить следующий вариант.

4. Автономное электроснабжение = Ветровой электрогенератор или (+) солнечные батареи или (+) минигэс или (+) генератор с приводом от ДВС + аккумуляторы (несколько штук по расчёту) + инвертор

Наиболее оптимальный вариант с экономической точки зрения, к тому же достаточно долговечный. Однако и самый дорогой.

Надеемся, что данная статья поможет вам более осознанно подойти к выбору системы автономного или резервного электропитания и её элементов. При желании оборудовать свой дом такими системами – обращайтесь к специалистам, которые составят проект и смету расходов и дадут советы по выбору конкретного, наиболее подходящего оборудования.

Альтернативная энергия своими руками для вашего дома

Основными альтернативными источниками энергии своими руками, позволяющими сэкономить на ваших счетах, являются солнечные батареи, ветряные турбины и гидроэлектростанции.

Поскольку счета за электроэнергию становятся все более и более дорогими, а цена на нефть неуклонно растет, становится все более и более популярным рассматривать альтернативных источников энергии для обеспечения домохозяйств электроэнергией. Жизнеспособными возобновляемыми зелеными источниками , доступными для обычных домохозяйств, являются солнечные панели, ветряные турбины и гидрогенераторы.

Солнечные панели и ветряные турбины занимают львиную долю рынка альтернативной энергии своими руками, но в зависимости от условий окружающей среды вы также можете рассмотреть возможность использования гидроэлектростанции. Готовые приложения, как известно, дороги для начала, хотя они стоят каждого цента и окупаются в долгосрочной перспективе.

Для большинства людей эти начальные затраты являются основным препятствием на пути к освобождению от тирании сети. Тем не менее, альтернативных источников энергии своими руками может сократить ваш инвестиционный бюджет на тысячи и помочь вам сократить или даже устранить счета за электроэнергию .

Ниже вы найдете информацию о 3 основных вариантах: солнечная энергия, энергия ветра и гидроэлектроэнергия.

Diy Альтернативная энергия от солнца

Photo by Vivint Solar on Unsplash

Солнечная энергия является наиболее популярным видом альтернативной энергии для домашнего электричества и получается благодаря нескольким наборам из фотогальванические элементы  состоящие из солнечных панелей для преобразования солнечного света в электричество с помощью явления, называемого фотоэлектрическим эффектом. Фотоэлектрический эффект заключается в высвобождении электронов с поверхности при попадании на нее света.

Сам свет можно рассматривать как поток частиц, называемых фотонами. Каждому электрону нужен фотон, который должен быть испущен с поверхности, при условии, что частота света достаточно короткая, как в случае видимого или ультрафиолетового света. Если частота слишком высока, свет может иметь высокую интенсивность, но все же не способен производить фотоэлектрический эффект, при этом электроны не высвобождаются. Чтобы возник фотоэффект, фотон должен быть достаточно энергичным, чтобы высвободить электрон с поверхности. Следовательно, это частота света ключевой элемент для проявления фотоэффекта. Без достаточно короткой частоты вся интенсивность в мире не заставит фотоны высвобождать электроны.

Фотогальваническая энергия является наиболее распространенным и жизнеспособным способом получения бесплатного электричества в домашних условиях (бесплатно, за исключением затрат на установку), так как реализовать проект «сделай сам» стало относительно легко и очень дешево. Все больше и больше людей прибегают к самодельным солнечным панелям , чтобы компенсировать высокие затраты на покупку, связанные с готовыми решениями, часто в диапазоне 20 000 долларов США для среднего домохозяйства, в то время как солнечная панель Diy может быть собрана из деталей, найденных в Интернете или на местном оборудовании всего за 200 долларов США, а некоторые Свободное время. Далее вы можете найти подробный план проектов самостоятельной солнечной энергетики, наиболее распространенной альтернативной энергии в домашних условиях.

Самодельная альтернативная энергия от ветра

фото Тоби Келлнер через Wikimedia

Энергия ветра является вторым по распространенности альтернативным источником энергии для домашних хозяйств, он прост в реализации и часто используется в качестве источника электроэнергии, дополняющего солнечную энергию. Это связано с тем, что эти два источника возобновляемой энергии являются прерывистыми, в зависимости от времени суток или сезона, что делает их полезными, когда другой непродуктивен. Однако, в зависимости от географического положения и местного климата, для электроснабжения всех домов подойдет только одна из двух технологий.

Ветровая электроэнергия вырабатывается с помощью ветряных турбин с вертикальной или горизонтальной осью . Наиболее распространенным типом является турбина с горизонтальной осью, как для коммерческого, так и для домашнего использования. Для обычного домохозяйства лучше сначала рассчитать, сколько ветра доступно, чтобы определить, сколько турбин необходимо. Для этого вам необходимо оценить плотность энергии ветра в вашем регионе, которая представляет собой годовую мощность, доступную на квадратный метр турбины, рассчитанную на разных высотах.

Также лучше построить несколько ветряных турбин меньшего размера, чем одну большую из-за дополнительных затрат, связанных с возведением большой опорной мачты, как на материалы, так и на рабочую бригаду. Большинство современных турбин имеют конструкцию с 3 лопастями, поскольку она оказалась наиболее эффективной, и располагают их с наветренной стороны, перед мачтой, чтобы создаваемая ею турбулентность не мешала лопастям, заставляя турбину более эффективным.

Ветряные турбины преобразуют энергию ветра в электричество. Традиционные турбины с горизонтальной осью состоят из 3 основных частей.

  1. Ротор , включая лопасти для преобразования энергии ветра в низкоскоростное вращение.
  2. Генератор , который включает в себя электрический генератор, элементы управления и редуктор для преобразования низкой скорости вращения лопастей в высокую скорость вращения, таким образом вырабатывая электроэнергию.
  3. Башня и механизм рыскания.

Энергия ветра является вторым наиболее распространенным источником альтернативной энергии в домашних условиях и особенно подходит, если вы живете в ветреном месте, например, у моря. Его можно легко реализовать с помощью проекта ветроэнергетики «Сделай сам», помогая сократить счета за электроэнергию очень экологичным способом.

Альтернативная энергия из воды своими руками

Фото Шэрон Питтауэй на Unsplash

С коммерческой и статистической точки зрения, гидроэлектростанций на сегодняшний день являются наиболее успешными из всех доступных возобновляемых источников энергии, составляя 88% всех альтернативных источников энергии. энергии произведено в мире . Гидроэлектростанции являются нормой для снабжения электросетей. Однако для удовлетворения потребностей в электроэнергии одного домохозяйства гидроэлектроэнергию следует рассматривать как дополнительный источник энергии к солнечной и ветровой энергии.

Это связано с тем, что микрогидрогенераторы , такие как самодельные устройства , не имеют резервуаров на разных высотах для хранения энергии, как большие электростанции. Резервуары существуют для хранения энергии, когда спрос низкий, и высвобождения ее позже, когда происходит всплеск. Из-за присущей им простоты они обеспечивают прерывистый источник энергии, который колеблется в зависимости от времени года и течения воды.

Гидроэлектрический генератор будет обеспечивать наибольшую мощность зимой, когда поток воды в изобилии, хорошо дополняя солнечную энергию (и/или энергию ветра), которая будет минимально эффективной в это время года. Гидрогенератор работает аналогично ветряному генератору, но имеет конструкцию турбины, специально адаптированную для водяной жидкости.

Гидрогенератор своими руками можно построить с относительной легкостью, что обеспечит альтернативное энергоснабжение вашего дома.

Об авторе : Уильям С. Эндрюс, тренер по личному развитию. Ему нравится помогать людям справляться с их проблемами. На этот случай у Вильяма есть свой раздел на сайте сервиса, где можно попросить написать за меня мою работу. Кроме того, он принимает участие в различных конференциях, чтобы улучшить свои знания и развить новые навыки.

Электробезопасность «Сделай сам» (DIY) — Фонд электробезопасности

  • D.I.Y. Факты и статистика
  • Сделай сам Советы по безопасности
  • Введение в правила безопасности электроинструментов и оборудования
  • Электроинструмент Факты и статистика
  • Советы по безопасности электроинструмента
  • Средства индивидуальной защиты (СИЗ)

Сделай сам Введение

Каждый год тысячи людей в Соединенных Штатах получают тяжелые травмы и поражения электрическим током в результате электропожаров, несчастных случаев, поражения электрическим током в собственных домах.

Текущий экономический спад вдохновил больше домовладельцев заняться самостоятельными проектами, чем когда-либо прежде. Столкнувшись со снижением стоимости жилья и старением недвижимости, домовладельцы могут отказаться платить за услуги лицензированного электрика.

Однако у большинства из них нет подготовки или опыта, необходимых для безопасного выполнения домашних электромонтажных работ, что увеличивает риск непосредственных травм и поражений электрическим током и потенциально создает новые опасности в доме. Работа с электричеством требует тщательного планирования и крайней осторожности, а срезание углов может дорого обойтись.

Наверх


Сделай сам Факты и статистика

  • В 2011 году расходы на обустройство и ремонт домов составили 275 миллиардов долларов.
  • Ежегодно в среднем 70 человек погибают от электротока, связанных с потребительскими товарами.
  • Самые последние данные Комиссии США по безопасности потребительских товаров показывают, что в Соединенных Штатах ежегодно происходит почти 400 убийств электрическим током.
  • Приблизительно 15 процентов поражений электрическим током связаны с потребительскими товарами. Опасности, связанные с проводкой, включая поврежденную или оголенную проводку и бытовую проводку, стали причиной почти 14 процентов этих смертей.
  • Ежегодно в пожарные службы США поступает информация о 360 900 пожарах в жилых домах, в результате которых погибло 2 495 человек, 13 250 человек получили ранения, а материальный ущерб составил 7 миллиардов долларов. Основной причиной крупнейших пожаров была неисправность электрооборудования.
  • Каждый год происходит около 37 000 травм от гвоздезабивных пистолетов; на 200% больше, чем в 1991 году.
  • В 2003-2005 годах на долю электрических пожаров в жилых домах приходилось 89 процентов электрических пожаров.

Вернуться к началу


Сделай сам Советы по безопасности

ESFI настоятельно рекомендует нанимать квалифицированного лицензированного электрика для выполнения любых электромонтажных работ в вашем доме. Однако, если вы все же решите сделать это самостоятельно, примите во внимание следующие важные советы по безопасности, прежде чем приступать к каким-либо проектам по электроснабжению дома:

  • Приложите усилия, чтобы узнать о вашей домашней электросистеме, чтобы вы могли безопасно ориентироваться в ней и обслуживать ее.
  • Никогда не беритесь за проект, который не соответствует вашему уровню навыков. Знание того, когда следует обратиться к специалисту, может помочь предотвратить возгорания, травмы и смертельные случаи, связанные с электричеством.
  • Всегда отключайте питание цепи, с которой вы планируете работать, отключив автоматический выключатель на главной сервисной панели.
  • Обязательно отключите от сети любую лампу или прибор, прежде чем работать с ним.
  • Проверьте провода, прежде чем прикасаться к ним, чтобы убедиться, что питание отключено.
  • Никогда не прикасайтесь к водопроводным или газовым трубам при выполнении электромонтажных работ своими руками.

Вернуться к началу


Безопасность электроинструментов и оборудования

Многие самодельные работы предполагают использование электроинструментов. Работа с электроинструментом требует квалифицированного инструктажа и обучения. Они могут быть смертельными, если их неправильно использовать или обслуживать.

Наиболее распространенный сценарий поражения электрическим током, связанный с электроинструментом, — это когда оборудование входит в контакт с проводами под напряжением во время его использования.

Вернуться к началу


Факты и статистика

  • По данным Комиссии США по безопасности потребительских товаров (CPSC), в Соединенных Штатах ежегодно происходит около 400 убийств электрическим током.
  • Приблизительно 15% случаев поражения электрическим током связаны с потребительскими товарами.
  • Ежегодно 8% случаев поражения электрическим током, связанных с потребительскими товарами, связаны с электрическими авариями, связанными с электрическими дрелями, пилами, шлифовальными машинами, кусторезами и другими электроинструментами.
  • 9% ежегодных поражений электрическим током, связанных с потребительскими товарами, вызваны несчастными случаями, связанными с использованием газонного и садового оборудования и лестниц, которые соприкасаются с воздушными линиями электропередач.

Наверх


Советы по безопасности электроинструмента

  • Используйте прерыватели цепи замыкания на землю (GFCI) с каждым электроинструментом для защиты от поражения электрическим током.
  • Не используйте электроинструменты с удлинителем длиной более 100 футов.
  • Никогда не используйте электроинструменты рядом с токоведущими электрическими проводами или водопроводными трубами.
  • Соблюдайте особую осторожность при резке или сверлении стен, где электрические провода или водопроводные трубы могут случайно коснуться или проникнуть внутрь.
  • Если во время использования электроинструмента срабатывает предохранительное устройство, отнесите инструмент в авторизованный производителем ремонтный центр для обслуживания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *